

MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

4037/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			mm.m. m
Page 2	Mark Scheme	Syllabus	Pap
	GCE O LEVEL – October/November 2012	4037	12 12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

			Mun n.			
Page 3	Mark Scheme	Syllabus	Pap. Mathans			
	GCE O LEVEL – October/November 2012	4037	12 All 13			
The follov	ving abbreviations may be used in a mark scheme or u	sed on the script	s:			
AG	Answer Given on the question paper (so extra checking is needed to ensure that					

AG	Answer Given on the question paper (so extra checking is needed to ensure that
	the detailed working leading to the result is valid)

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

							www.m. M	
	Pa	ge 4	Mark Scheme			Syllabus	Pap	7325
			GCE O LEVEL – October/Nov	ember 201	2	4037	12	S. R
1	(i)	$\left \left(\frac{24}{7}\right)\right = 2$	5	M1 A1 [2]		or a complete meth he modulus	MMW. MY MAN Pap. 12 nod to find the sum	loud.com
	(ii)	$4\lambda - \mu = 2$ $3\lambda + 2\mu =$ $\lambda = 4 \text{ and}$	= 2	M1 DM1 A1 [3]		for equating like ve for solving simult		
2	(i)	$\frac{1}{2} \begin{pmatrix} 1.5 & 1\\ 1 & 7 \end{pmatrix}$;)	B1 B1 [2]		or reciprocal of det or matrix	erminant	
	(ii)		$\begin{pmatrix} -1\\ 1.5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 6\\ -0.5 & 4 \end{pmatrix}$	M1	must	or correct use of in be using pre-multi inverse, must see a	plication with	
		$=\frac{1}{2}\binom{1}{1}$	$ \begin{array}{c} 5 & 1 \\ 2 \end{array} \begin{pmatrix} 1 & 6 \\ -0.5 & 4 \end{pmatrix} $			iply out.	*	
		$=\frac{1}{2}\begin{pmatrix}1\\0\end{pmatrix}$	$ \begin{array}{c} 13\\14 \end{array} \right) \text{or} \left(\begin{array}{cc} 0.5 & 6.5\\0 & 7 \end{array} \right) $	A2,1,0 [3]	-1 ea	ach error		

					www.m.	12
Page 5	Mark Scheme		Syllab	ous	Pap	ary ary
	GCE O LEVEL – October/Nov	ember 20 ⁴	403	7	12	The s
$3 (i) = \frac{\cos (i)}{\sin (i)} + $		B1	B1 for $\cot \theta = \frac{cc}{si}$	$\cos \theta$		AN ANSIAS SILISCIOLICICOM
	$1 + \cos(1 + \frac{\left[\sin \left[\frac{1}{2}\right]^{\uparrow} 2(1)}{\sin(1 + \cos(1))})$	M1	M1 for attempt t			
	" "(" + 1"))/("sin" "(" ("cos"(" -	M1	M1 for use of id			
$= \frac{1}{\sin (} = \operatorname{cosec}($ Alternative scheme	:	M1 A1 [5]	M1 for algebra/s Must see cosec (-	on	
$=\frac{1}{\tan(1+\cos(1))}$						
	s" [["(") +" "tan" "(" "" "sin" "(" " "(" + " ([["sin"]] [^] =2" "(")/"co	M 1	M1 for attemptin	ng to add fra	actions	
	" K"cos"] ¹ "2" "(" + " [["sin"]] L"))/("sin" "(" ("cos" "(" " + 1"	B1	B1 for $\tan \theta = \frac{\sin \theta}{\cos \theta}$	$\frac{\ln\theta}{\cos\theta}$		
$=\frac{1}{\sin \theta}=\cos \theta$						
		M1	M1 for use of id	lentity		
		M1 A1	M1 for algebra/s Must see cosec		on	
	ec $\theta = 0.5$, leads to sin $\theta = 2$ is no solutions.	B1 [1]	Needs an explan	nation		

	Pa	ge 6	Mark Scheme			Syllabus	Pap	4
		900	GCE O LEVEL – October/No	vember 201	12	4037	Pap nymathsc	o no
	(OLA
4	(i)	$\log_a p + 1$		B1 D1				
		$2 \log_a p$	$-\log_a q = 15$	B1 M1	M1 f	or solution of the	two equations	
		$\log_a p = 0$	5 and $\log_a q = 3$	A1		or both	ewo equations	
		Bur	- Gu 1	[4]				
Or		9						
		$a^9 = pq$ $a^{15} = p^2q$		B1				
			ich leads to $\log_a p = 6$	B1 M1	M1 f	or complete coluti	on of the two	
		u - p wh	then reads to $\log_a p = 0$	111	equat	or complete soluti tions	on of the two	
		$a^3 = q$ wh	ich leads to $\log_a q = 3$	A1	A1 fo	or obtaining both i	n correct log form	
0						C	C	
Or		$\log_a p^2 q$ -	$-\log_a pq = 6$	M1	M1 f	for $\log_a p^2 q - \log_a q$	pq = 6	
		$p^2 q$	$= 6, \log_a p = 6$	D1	D1.0	or $\log_a \frac{p^2 q}{p q} = 6$		
		$\log_a - pq$	$=$ 0, $\log_a p = 0$	B1	BLIC	$\operatorname{for} \log_a \frac{1}{pq} = 6$		
		$\log na =$	$\log_a p + \log_a q = 9$	B1	B1 fc	or $\log_a pq = \log_a p$	$p + \log_a q = 9$	
		so $\log_a q$		A1	A1 fo	or both		
	(ii)	$\log_p a + 1$	$\log_q a = \frac{1}{\log_q p} + \frac{1}{\log_q q}, = 0.5$	M1, A1 [2]	M1 f	or change of both	to base <i>a</i> logarithm	
			$\log_a p - \log_a q$	[2]				_
5	Usi	ng x = 6 +	$2y \text{ or } y = \frac{x-6}{2}$	M1	M1 fe	or attempt to obtain	in an equation in	
		C	2		one v	variable.	-	
	$y^{2} +$	4y - 12 =	0 or $x^2 - 4x - 60 = 0$	M1	M1 f	or reducing to a th	ree term quadratic	
	*	-				ted to zero	-	
	(v +	(v-2) = -6	= 0 or $(x+6)(x-10) = 0$	DM1	DM1	for correct attem	ot to solve, must be	
	V '	5)(- 2)				points of intersect		
	lead	ling to $y =$	-6, v = 2	A1	$\Delta 1 f_{c}$	or each correct pai	r	
	and	0 2	-6, x = 10	A1 A1		or each correct par	1	
	1D	$= \sqrt{16^2 + }$		N 1	MIC	••••••••••••••••••••••••••••••••••••••	40	
			8√5 or 17.9	M1 A1		or correct attempt allow in any of the		
		= ¥JZU ,	or 17.9	[7]	ліА	thow in any of the	50 1011115	

Page 7	Mark Schen	ne	Syllabus	Pap
r age r	GCE O LEVEL – October/			12 12
		B1	If sin 15° is not used, t available B1 for correct statemen	
	or equivalent	M1	M1 for correct manipu sin $u =$ an expression in	
$=\frac{2\sqrt{2}}{3\sqrt{2}+4}$		M1	M1 for attempt to obtai reasonable attempt at s their numerator	n 2 √2_, √18 √2 or implification of
		M1	M1 for attempt to ratio attempt at simplification	
		A1 [5]		
$\sin(=6-4\sqrt{2})$	2			
(i) BC, BE, 1	EC: $y - 4 = m(x - 8)$ or $y - 8 = m(x - 6)$	M1	M1 for attempt to obta BC, BE, EC, (gives $y =$	
AD, AE:	$y-4=-\frac{1}{m}$ (x + 5)	M1	M1 for attempt to obta AD, AE, (gives $2y = x$	
For D, <i>y</i> =	= 8 and x = 3	B1, A1	B1 for $y = 8$, allow any A1 for $x = 3$	where
	-4x = x + 13 or equivalent o $x = 5.4, y = 9.2$	M1	M1 for attempt at the p of <i>BE</i> with AD, not dep	
		A1 [6]	A1 for both	
(ii) Area = $\frac{1}{2}$	$(13+3) \times 4$			
$\operatorname{or} = \frac{1}{2} \begin{vmatrix} 3 \\ 6 \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	M1 for a correct attemp allow odd arithmetic sl	
= 32		A1		

	Page 8	Mark Scheme			Syllabus	Pap	13
		GCE O LEVEL – October/Nov	vember 20 ²	12	4037	12 Ath	C/C
						Pap My marting 12	.°¢,
; ((i) Area = -	$\frac{1}{2}$ 18 ² sin 1.5 - $\frac{1}{2}$ 10 ² (1.5)	M1	M1 f r = 1	for attempt at area of 0	of a sector with	
	=]	61.594 – 75	M1		for attempt at area e	of triangle with	
		36.6	A1 [3]				
	(or area	of triangle = $\frac{1}{2} \times 24.539 \times 13.170$)					
(5 or 10 × 1.5 36 sin 0.75	B1 M1	M1 f	for <i>AC</i> for correct attempt n if seen in (i)	at <i>BD</i> – can be	
	$BD = \sqrt{24}$	$\frac{18^2 + 18^2 - (2 \times 18 \times 18 \cos 1.5)}{5.5}$		01,01			
	Perimete	er = 15 + 24.5 + 16 = 55.5	M1 A1 [4]	M1 f	for attempt to obtai	n perimeter	
) ((a) (i)		B1		for either correct an $y = \sin 2x$	nplitude or period	
	-		B1 B1	B1 f	for $y = \sin 2x$ all correct period for $y = \sin 2x$ all correct period for $y = \sin 2x$	parallel to y-axis	
	, L		B1 [4]		for $y = 1 + \cos 2x$ all		
	(ii) <i>x</i> =	$=\frac{\pi}{4},\frac{\pi}{2}$	B1, B1 [2]	Allo	w in degrees		
((b) (i) Am	applitude = 5, Period = $\frac{\pi}{2}$ or 90°	[2] B1,B1 [2]	B1 fo	or each		
	(ii) Per	$iod = \frac{\pi}{3}$ or 60°	B1 [1]				

						Man. Manager M
	Page 9	Mark Schen			Syllabus	Pap. n. way
		GCE O LEVEL – October/	November 201	2	4037	12
						-cloud.cc
10	(i) $f\left(\frac{1}{2}\right):\frac{3}{2}$	$+\frac{a}{2}+b=0$	M1	M1 f	for use of $x = \frac{1}{2}$ and	d equating to zero
		$2x^2 + 8x + a$	M1	M1 f	or differentiation	
	$f'\left(\frac{1}{2}\right):3$	+4+a=0	M1	M1 for $f'\left(\frac{1}{2}\right)$	or attempt to obtain	n $a = -7$ from
	Leading t an	to $a = -7$ and $b = 2$	A1 A1 [5]	(2)	
	(ii) f (-3) = -	-49	M1 A1 [2]		or use of $x = -3$ in inder theorem or a ion.	
	(iii) $f(x) = (2x)$	$(x-1)(2x^2+3x-2)$	M1, A1 [2]	M1 f	or attempt to obtain	n quadratic factor
		(x-1)(2x-1)(x+2) to $x = 0.5, -2$	B1 B1 [2]	B1 fc	or each – must be c	correct from work

M1 A2,1,0 A1 [4]	Syllabus Pap 2 4037 12 M1 for attempt to differentiate a quotient -1 each error
A2,1,0 A1	M1 for attempt to differentiate a quotient
[4]	
B1	
M1	M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough. Must have attempted to solve $\frac{dy}{dx} = 0$ If using second derivative, must be either a product or quotient for M1
A1 [3]	together with some sort of conclusion.
B1 B1 M1	B1 for $\frac{xx^2}{(1+x^2)}$, B1 for $\frac{1}{2}\frac{x^2}{(1+x^2)}$ M1 for correct use of limits in an attempt at integration
	B1

				Mun Munsus Pap. Manage
Page 11	Mark Scheme		Syllabus	Pap no hor
	GCE O LEVEL – October/Novembe	er 2012	4037	12 All 13
				12 thscloud.com
11 OR				Som

11	OR		
	(i)		
	$\frac{dy}{dx} = \frac{(x^2 - 2)2Ax - (Ax^2 + B)2x}{(x^2 - 2)^2}$	M1 A2,1,0	M1 for attempt to differentiate a quotient –1 each error
	$=\frac{2x(Ax^2-2A-Ax^2-B)}{(x^2-2)^2}$		
	$=\frac{2x(2A+B)}{(x^2-2)^2}$	A1 [4]	Answer given
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 - 2)^{-1} 2Ax + (-2x)(x^2 - 2)^{-2} (Ax^2 + B)$		
	(ii) $5 = 2A + B$ 3 = A + B	M1 M1	M1 for use of conditions once M1 for use of conditions a second time
		IVI I	and attempt to solve resulting equations
	Leading to $A = 2, B = 1$	A1 [3]	
	(iii) when $\frac{dy}{dx} = 0, x = 0$	B1	B1 for correct <i>x</i>
	$y = -\frac{1}{2}$	∛ B1	$ ^{A}$ B1 for $y = -\frac{B}{2}$
	$\frac{d^2 y}{dx^2} = \frac{(x^2 - 2)^2 (-10) - (-10x) 4x(x^2 - 2)}{(x^2 - 2)^4}$	M1	M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough.
			Must have attempted to solve $\frac{dy}{dx} = 0$
	When $x = 0$, $\frac{d^2 y}{dx^2}$ is -ve \therefore max		If using second derivative, must be either a product or a quotient for M1 together with some sort of conclusion.
	dx^2 is to timux	A1 [4]	A1 for a correct conclusion from completely correct work.