

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

4037 ADDITIONAL MATHEMATICS

4037/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			mun m
Page 2	Mark Scheme: Teachers' version	Syllabus	Pap. Marker
	GCE O LEVEL – October/November 2011	4037	
Mark Scheme N	otes		"ISCIOLATION
Marks are of	the following three types:		Nr.

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are Μ not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. А Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following • on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

			Mun. Mun. Mun. Mun. Mun. Pap. Mar.
Page 3	Mark Scheme: Teachers' version	Syllabus	Pap no tot
	GCE O LEVEL – October/November 2011	4037	
The follow	ing abbreviations may be used in a mark scheme or u	sed on the script	ts: Viscioud.com
AG	Answer Given on the question paper (so extra check	ing is needed to	ensure that

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
	Departit of Devict (allowed when the validity of a colution many not be absolutely

- Benefit of Doubt (allowed when the validity of a solution may not be absolutely BOD clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ ". marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Teacl GCE O LEVEL – October		Syllabus 11 4037	Pap. Wnaths 11
1	(a) (i) 7 an	7 and 0 B		B1 for each.	Pap Num Ny Na Pap 11
	(ii) 22 a	nd 15	B2 [4]	B1 for each.	
	(b) 3 'sets' er	nclosed in a rectangle	B1 B1 [2]	B1 for set P and set Q B1 for set R contained	
2	f (-2):-	2a + b = 84	M1 A1	M1 for substitution of	f a correct value of <i>x</i>
	$f\left(\frac{1}{2}\right):\frac{1}{2}$	$a+b=\frac{3}{2}$	A1	A1 for each correct equivalent equivalent correct equivalent equiv	quation (allow
	a = -33,	<i>b</i> = 18	M1, A1	M1 for solution to ob	tain <i>a</i> and <i>b</i>
	f(1) = -1	9	√B1 [6]	$\sqrt{B1}$ on their <i>a</i> and <i>b</i>	
3	(i) Gradient $\lg c = -0$.		B1 M1 M1	M1 for a valid attemp M1 for attempt to dea	-
	c = 0.251		A1 [4]		
	(ii) N = 0.25	1 <i>t</i> ⁴	√B1 [1]	$\sqrt{B1}$ on their <i>m</i> and <i>c</i>	
4	(i) 6! = 720		B1 [1]		
	(ii) $2 \times 5! =$	240	B1		
	(iii) 4 × 5! =	480	[1] B1		
	Odd first	t and last: 4! (24) and even last: 4 x 4! (144) × 4! = 168	[1] B1 B1 B1		
			[3]		

	Page 5	Mark Scheme: Teac GCE O LEVEL – Octobe			11	Syllabus 4037	Pap Nath	Maths
								SCIOLA
5	(i) $v = 2\cos(t)$ when $t = 1$		M1 A1	[2]	M1 fo	or attempt to diffe	rentiate	
	(ii) $\cos 2t =$	$0, 2t = \frac{\pi}{2}$	M1		M1 fe	or attempt to solve	e and deal with $2t$	
	$t=\frac{\pi}{4}$ (0.785)	A1	[2]				
	(iii) when <i>t</i> =	$=\frac{\pi}{4}, x=4$	B1					
	when $t =$	7	√B1	[2]	√B1 t	for 'their 4' –3		
	(iv) $a = -4 \sin^2 \theta$	n 2 <i>t</i>	M1					
	when $t =$	$=\frac{3\pi}{4}, a=4$	A1	[2]				
6	(a) $-5 = p$	$+3\tan\left(-\frac{\pi}{4}\right)$	M1 A1		M1 fo	For use of $\left(-\frac{\pi}{12},-\right)$	5)	
	$\therefore p = -2$ $1 = p'+3$ $\tan 3q =$	$\tan 3q$	M1		M1fo	or use of their p and	d (q, 1)	
	$q = \frac{\pi}{12}$		A1	[4]				
	(b) amplitud	$\begin{array}{ll} a = 4\\ b = 5 \end{array}$	B1 B1					
		= 11, $x = 0$, so $c = 7$ f = 3, $x = \frac{\pi}{3}$, so $c = 7$	M1 A1	[4]		For use of either matrix in and $x = \frac{\pi}{3}$	ax and x = 0,	

						mmin M
	Pa	ge 6	Mark Scheme: Teachers	' version	Syllabus	Pap
			GCE O LEVEL – October/No	vember 20	11 4037	11 91/10 15
7	(i)	$\frac{n(n-1)}{2\times 25} =$	$=\frac{3}{5}$	B1	B1 for correct term	Pap. Num. num. Pap. 11 11 Scioud.com
		n^2-n-3	$0 = 0$ or $\binom{n}{2} = 15$	M1	M1 equating 3 rd term to	$0\frac{3}{5}$
				M1	M1 attempt to solve que that $\binom{n}{2} = 15$ when $n = 15$	-
		<i>n</i> = 6		A1 [4]		
	(ii)	$\left(1 + nx + \frac{2}{3}\right)$ term : 4	$\frac{3}{5}x^2\left(4-\frac{12}{x}+\frac{9}{x^2}\right)$	B1	B1 for 4	
		$-\frac{12n}{5}$ (14.4)	M1	M1 for 2 nd term	
		$0.18(n^2 -$	(5.4)	M1	M1 for 3 rd term	
		= - 5		A1 [4]		
8	(a)	$\int_{0}^{2} e^{2x} + 2e^{2x}$	$e^x + 1 dx$	M1	M1 for expansion	
		$\left[\frac{e^{2x}}{2} + 2e^{2x}\right]$	$\left[x^{x}+x\right]_{0}^{2}$	B1 B1 B1	B1 for each correct ter	m
		= 41.6		M1, A1 [6]	M1 for correct use of l	imits
	(b)	$y = \frac{1}{2} (4x)$	$(c+1)^{\frac{1}{2}}(+c)$	M1	M1 for attempt to integ	grate
				A1	A1 for $(4x+1)^{\frac{1}{2}}$	
				A1	A1 for $\frac{1}{2}(4x+1)^{\frac{1}{2}}$	
		when $y = x$	4.5, $x = 2$, $c = 3$	M1	M1 for attempt to find integration	<i>c</i> , must be from
		$y = \frac{1}{2} (4x)$	$(+1)^{\frac{1}{2}} + 3$	A1 [5]	A1 for $c = 3$	

							www.m. M	
	<u> </u>		Mark Scheme: Teachers			Syllabus	Pap	Tath a
			GCE O LEVEL – October/No	ovember 20	11	4037	<u>11</u>	3
9	(i)	$\csc^2 x =$	8sin <i>x</i>	M1		or use of correct id valent	Mu,	oud.com
		$\sin^3 x = \frac{1}{8}$		M1	M1 f	or dealing with cos	sec or equivalent	
		$\sin x = \frac{1}{2}$		M1	M1 f	or attempt to solve		
		$x = 30^{\circ}, 1$	50°	A1, A1 [5]	With	hold last A1 if extr	a solutions	
	(ii)	$\tan(2y-)$	$(0.3) = -\frac{5}{4}$	M1, A1	M1 f	or attempt to get in	terms of tan	
		2y - 0.3 =	2.2455, 5.387	M1	M1 f	or dealing with ord	ler correctly	
		<i>y</i> = 1.27, 2	2.84 (allow 1.28 and 2.85)	A1, A1 [5]				

								mm m	
	Page 8	8	Mark Scheme: Teacher	s' versi	on		Syllabus	Paputh	Nat a
			GCE O LEVEL – October/No		er 20'	1	4037	11 ⁴ / ₂₀	~~s
									36,
10	EITHE (i) $\frac{1}{2}$		$\theta\Big) - 2\frac{1}{2}r^2\theta = 5$	M1 M1			or use of sector are or attempt to equat		Ad. COM
	θ =	$=\frac{1}{r^2}$		A1					
	<i>P</i> =	=2r(36)	$P) + 2r + 2r + 2r\theta$	M1		M1 fo	or use of arc lengtl	n	
	lead	ding to	$P = \frac{8}{r} + 4r$	M1		M1 fo	or attempt to get P	in terms of r and θ	
	(an	iswer gi	ven)	A1	[6]				
	(ii) $\frac{\mathrm{d}P}{\mathrm{d}r}$	$\frac{P}{r} = -\frac{8}{r^2}$	+ 4	M1		M1 fo to zer	-	rentiate and equate	
	wh	then $\frac{\mathrm{d}P}{\mathrm{d}r}$	$=0, r = \sqrt{2}$	A1					
	<i>P</i> =	$=8\sqrt{2}$		M1 A1	[4]	M1 fo	or attempt to obtai	n P	
	(iii) $\frac{d^2 I}{dr}$	$\frac{P}{r^2} = \frac{16}{r^3}$, + ve ∴ minimum	B1		B1 fo	or correct method a	and conclusion	
	wh	en $r = -$	$\sqrt{2}, \theta = \frac{1}{2}$	B1	[2]				

Page 9	Mark Scheme: Teachers' version GCE O LEVEL – October/November 2011			Syllabus 4037	Pap. Wnathsch
OR (i) $OC = 10$ -	- r	B1 [1]			MANN THYTHE HIS CIC
(ii) $\sin\theta = \frac{r}{O}$	$\frac{r}{C}$, $\sin\theta = \frac{r}{10-r}$	M1	M1 fo	r attempt to use si	nθ
leading to	$r = \frac{10\sin\theta}{1+\sin\theta}$	A1 [2]	A1 for answe	·	o simplify to given
(iii) $\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{10}{(1+1)^2}$	$\frac{\partial\cos\theta}{\sin\theta}^2$	M1	M1 for quotie	r correct attempt t	o differentiate a
X	,	A2, 1, 0	-	ach error	
when $r =$	$\frac{10}{3}$, $\sin\theta = \frac{1}{2}$, $\cos\theta = \frac{\sqrt{3}}{2}$	M1	M1 fo	r attempt to find s	in or cos
	5 2 2	M1	M1 for	r substitution	
$\therefore \frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{2r}{2}$	$\frac{0\sqrt{3}}{9}$ (3.85)	A1			
	, ,	[6]			
(iv) $\frac{\mathrm{d}r}{\mathrm{d}t} = 2$,		B1			
when $\theta =$	$\frac{\pi}{6}, \frac{\mathrm{d}\theta}{\mathrm{d}r} = \frac{3\sqrt{3}}{20}$				
$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t}$	$< \frac{\mathrm{d}\theta}{\mathrm{d}r}$	M1	M1 fo	r correct use of ra	tes of change
leading to	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{3\sqrt{3}}{10} \ (0.520)$	A1 [3]			