

MARK SCHEME for the October/November 2008 question paper

4037 MATHEMATICS

4037/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

			mm m
Page 2	Mark Scheme	Syllabus	Pap Pak Nath
	GCE O LEVEL – October/November 2008	4037	01 915,0 75
Aark Scheme N	otes		01 inscloud.com

Mark Scheme Notes

Marks are of the following three types:

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

			mm m
Page 3	Mark Scheme	Syllabus	Pap Mar Nains
	GCE O LEVEL – October/November 2008	4037	01 01
The follow	ing abbreviations may be used in a mark scheme or use	ed on the scripts:	
AG	Answer Given on the question paper (so extra checkin	a is needed to e	

AG	Answer Given on the question paper (so extra checking is needed to ensure that
	the detailed working leading to the result is valid)

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Ма	rk Scheme		Syllabus	Pau
1 490 1	GCE O LEVEL -		4037	01	
(i) correct diag	gram	B1			Num Mynath 01
(ii) correct diag	gram	B1			
(iii) correct diag	gram	B1 [3]			
$(2x+1)^2 > 8x + 4x^2 - 4x - 8 > 0$	9	M1	M1 for simplification	on to 3 term quadra	tic
$x^{2} - x - 2 > 0$ (x + 1)(x - 2) > 0)	DM1	DM1 for factorisation	-	
Leads to critical		A1	A1 for critical value	s	
x < -1 and $x > 2$		√A1 [4]	Follow through on t	neir critical values	
$\sin^2 4 \pm$	$1 \pm \cos^2 4 \pm 2\cos 4$				
$LHS = \frac{SHI + A + A}{(1 + A)}$	$\frac{1+\cos^2 A+2\cos A}{+\cos A)\sin A}$	M1 A1	M1 for attempt to de obtain numerator	eal with fractions a	and attempt to
X			A1 correct		
$=$ $2+2\cos A$		M1	M1 for use of $\sin^2 A$	$+\cos^2 A = 1$	
$\frac{1}{(1+\cos A)\sin^2}$					
$=\frac{2}{\sin A}$ leading	to 2cos ecA	A1 [4]			
Substitution of <i>x</i>	- 1	M1	M1 for substitution	of r = 1 and count	ad to 2
leading to $a + b$		1411		_	
Substitution of <i>x</i>	$x = -\frac{1}{2}$ leading to	M1	M1 for substitution	of $x = -\frac{1}{2}$ and eq	uated to 6
-a+2b-28=0	_			_	
		A1	A1 for both correct		
Leading to $a = -$	12, $b = 8$	M1 A1 [5]	M1 for solution A1 for both		
		[2]			
(i) $a = \frac{1}{13} (5i)$	- 12 j)	M1, A1	M1 for a valid attem	pt to obtain magn	itude.
(ii) a(5i 12i) -	-pi + j = 19i - 23j	[2]			
5q + p = 19		M1	M1 for equating like		
-12q + 1 = Leading to		M1 A1 [3]	M1 for solution of (A1 for both	sımultaneous) equ	ations
(i) $2t^2 - 9t - 5$		M1	M1 for attempting to	o form a quadratic	in <i>t</i>
(2t+1)(t-	(5) = 0	DM1	DM1 for attempt to		
$t=\frac{1}{2}, t=5$		A1 [3]	A1 for both		
1					
(ii) $x^{\frac{1}{2}} = -0.5$,		M1	M1 for realising tha	t $x^{0.5}$ is equivalent	to <i>t</i> (or valid
x = 0.25, 25)	A1,A1 [3]	attempt at solution)		

Page 5	Mai	rk Sch	omo		Syllabus	- Myn
Fage J	GCE O LEVEL –				4037	01 01
(i) $y = 4x^2 - 12x$ $y = (2x - 3)^2$	$\begin{array}{c} x+3\\ -6 \end{array}$	B1 B1 B1	[3]	B1 for 2 (part of lin B1 for -3 (part of lin B1 for -6		WWW. MYMAIN Pap 01
(ii) $\left(\frac{3}{2},-6\right)$		√B1, √B1	[2]	Follow through on the Allow calculus methe		
(iii) f≥–6		$\sqrt{B1}$	[1]	Follow through on the	neir c	
$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x}(+c)$		B1		B1 for $-2e^{-2x}$		
When $\frac{dy}{dx} = 3, x =$ $\frac{dy}{dx} = -2e^{-2x} + 5$	$= 0, \therefore c_1 = 5$	M1 A1		M1 for attempt to fin	nd c_1	
dx $y = e^{-2x} + 5x(+c_2)$		B1		B1 for $-2e^{-2x}$		
When $x = 2$, $y = 6$		M1		M1 for attempt to fin	$d c_2$	
$y = \mathrm{e}^{-2x} + 5x - 10$		√A1	[6]	$\sqrt{-2}$ times their c_1		
(i) $2^5 + {}^5C_12^4(-3)$ 32 - 240x + 3	$3x) + {}^{5}C_{2}2^{3}(-3x)^{2}$ $720x^{2}$	B1 B1 B1	[3]	B1 for 32 or 2 ⁵ B1 for -240 B1 for 720.		
(ii) $32a = 64,$ 32b - 240a = b = 9 -240b + 720 c = -720	= -192,	B1 M1 A1 M1 A1	[5]	B1 for $a = 2$ M1 for equation in a A1 for $b = 9$ M1 for equation in a A1 for $c = -720$	•	
0 (a) (i) $fg(x) =$	$f\left(\frac{x}{x+2}\right)$	M1		M1 for order		
$=3-\frac{1}{x}$	$\frac{x}{x+2}$	A1	[2]			
(ii) $3 - \frac{x}{x+2} = 1$	0	DM1		DM1 for dealing wit	h fractions sensih	lv
x+2 leading to x		A1	[2]			1 <i>y</i>
reading to x	1.75		L ~]			
(b) (i) $h(x) > 4$		B1	[1]			
or $4 + \ln \theta$	e^5 (≈ 148)	M1 A1	[2]	M1 for attempting to	o obtain inverse fu	nction
(iii) correct		B1		B1 for each curve		
		B1 B1	[2]	D1 for idea of arms	otm	
		B1	[3]	B1 for idea of symm	ieu y	

			mm.n.
Page 6	Mark Scheme	Syllabus	Pap
	GCE O LEVEL – October/November 2008	4037	01

Page 6 Ma GCE O LEVEL –			rk Scheme October/N		Syllabus 4037	Pap nat
11 (i)	$\tan^2 2x = 3$		M1	M1 for an equation	in $\tan^2 2x$	
	$\tan 2x = (\pm)$		DM1	M1 for attempt to s	olve using 2x corre	ectly
	$2x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ $x = 30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}$			A1 for any pair		
(ii)	$2 \operatorname{cosec}^2 y +$	$\operatorname{cosec} y - 3 = 0$	M1, A1	M1 for correct use	of identity or other	valid method
		$3)(\operatorname{cosec} y - 1) = 0$	M1	A1 for a correct qua M1 for solution of a correctly		npt to solve
	$\sin y = -\frac{2}{3},$. 1				
	5	318.2°, <i>y</i> = 90°	A1, A1 [5]	A1 for 221.8°, 318.	2°, A1 for 90°	
	(iii) $\cos\left(z+\frac{\pi}{2}\right)=-\frac{1}{2}$		M1	M1 for dealing with	h sec and order of c	operations
	$z + \frac{\pi}{2} = \frac{2\pi}{3}$	5				
	$z = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{5\pi}{6}$, allow 0.52, 2.62 rads	A1,A1 [3]	A1 for each		
12 EITI	HER					
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x+1)}{(x+1)}$ $= \frac{x(x+1)}{(x+1)}$,	M1 A1	M1 for attempt to d A1 correct allow ur	•	ent
			DM1	DM1 for equating t	to zero and an atten	npt to solve
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0, x = 0$	- 0, -4	A1,A1 [5]	A1 for each pair (co	bound be $x = 0$ and x	= -2)
(ii)	gradient of	normal = $-\frac{4}{3}$	M1	M1 for attempt to o	btain gradient of th	ne normal
	normal $y =$	$-\frac{4}{3}x + \frac{11}{6}$, leads to	A1	A1 for a correct (ur	nsimplified) normal	lequation
	M (1.375,0 N (0, -4)	5 0	√ B1 B1	Follow through on B1 for N	their normal	
	Area = 2.75	i	M1 √A1 [6]	M1 for attempt to g Ft on their <i>M</i> and <i>N</i>)

					WWW. TRYTARISCIOLUS CONT
Page 7	Ма	rk Scheme		Syllabus	Paptro
	GCE O LEVEL –	October/N	ovember 2008	4037	01 911, 75
					Cloud
12 OR					·. Con
(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x-2}$	- 2	B1	B1 for e^{x-2}		
dx	-	B1	B1 for –2 only		
$\frac{\mathrm{d}x}{\mathrm{d}y} = 0, \mathrm{e}^{x-1}$	$^{2} = 2$	M1	M1 for equating to z	ero and attempt to	solve
$x = 2 + \ln 2$		A1	A1 for <i>x</i>		
$(2.69) y = 4 - 2 \ln 2 (2.61)$	2	A1	A1 for <i>y</i>		
$\frac{d^2 y}{dx^2} = e^{x-2}$	² , always +ve ∴ min	B1 [6]	B1 for conclusion fro	om a valid method	1
(ii)					
$\int_{0}^{3} (e^{x-2} - 2x + 6)$	$dx = \left[e^{x-2} - x^2 + 6x\right]_0^3$ = (e - 9 + 18) - (e ⁻²) = e - e ⁻² + 9	M1, A1	M1 for attempt to int	tegrate	
	$=(e-9+18)-(e^{-2})$	M1	M1 for correctly app	lying limits	
h = 0	$= e - e^{-2} + 9$	A1	A1 for $e - e^{-2}$	-	
<i>k</i> = 9		B1 [5]	B1 for <i>k</i>		