AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/2)
Paper 2

Specimen 2020 Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:
- mathematical instruments

You may use a calculator

Instructions
- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

SPECIMEN MATERIAL

www.mymathscloud.com
There are no questions printed on this page
Answer all questions in the spaces provided.

1. A sketch of the lines $y = 2x$ and $y = 6$ is shown.

 Work out the area of triangle OPQ.

 [3 marks]

 Answer: __________ units2

2. A circle, centre (0, 0) has circumference 20π

 Work out the equation of the circle.

 [2 marks]

 Answer: ________________________________
M is the midpoint of the line AB.

Work out the values of p and r.

$p = \quad \quad \quad \quad r = \quad \quad \quad \quad$

4 (a) Circle the solution of $-3x < -18$

$x > -6 \quad \quad \quad x < -6 \quad \quad \quad x > 6 \quad \quad \quad x < 6$

4 (b) Circle the solution of $x^2 \geq 16$

$x \geq -4 \quad \text{or} \quad x \leq 4 \quad \quad \quad x \leq -4 \quad \text{or} \quad x \geq 4$

$x \geq -4 \quad \text{or} \quad x \geq 4 \quad \quad \quad x \leq -4 \quad \text{or} \quad x \leq 4$
5 Here is a sketch of \(y = f(x) \) where \(f(x) \) is a quadratic function.

The graph intersects the \(x \)-axis at \(A (-1, 0) \) and \(B \) has a maximum point at \((0.5, 6) \).

5 (a) Work out the coordinates of \(B \).

\[\text{Answer} \ (\quad , \quad) \]

5 (b) The equation \(f(x) = k \) has exactly one solution.

Write down the value of \(k \).

\[\text{Answer} \quad \]

Turn over
6 \[A = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} s \\ -5 \end{pmatrix}, \quad C = \begin{pmatrix} -1 \\ t \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 1 \\ 7 & u \end{pmatrix} \]

\(s, t\) and \(u\) are constants.

6 (a) \[AB = C \]

Work out the values of \(s\) and \(t\).

[3 marks]

\[s = \]

\[t = \]
6 (b) \quad AD = 1

Work out the value of \(u \). [1 mark]

\[u = \]

7 \quad Work out the equation of the straight line that is
parallel to the line \(2y = x \)
and
intersects the \(x \)-axis at (4, 0) [3 marks]

Answer ________________________________
8 (a) Work out \(\frac{ab}{cd} + \frac{bc}{ad} \)

Give your answer as a single fraction in its simplest form. [2 marks]

Answer

8 (b) Work out \(\frac{7}{2x^2} + \frac{4}{3x} \)

Give your answer as a single fraction in its simplest form. [2 marks]

Answer
A, B and C are points on a circle, centre O.

Work out the size of angle y.

Answer: __________ degrees
\[y = \frac{6x^9 + x^8}{2x^4} \]

Work out the value of \(\frac{d^2y}{dx^2} \) when \(x = 0.5 \)

[5 marks]

Answer: ___________________________
For sequence A, \(\text{\textit{n}} \text{th term} = \frac{n}{14n + 30} \)

For sequence B, \(\text{\textit{n}} \text{th term} = \frac{2}{n} \)

The \(k \)th term of sequence A equals the \(k \)th term of sequence B.

Work out the value of \(k \).
You must show your working.

[4 marks]

Answer ___________________________
This shape is made from two rectangles. All dimensions are in centimetres.

The perimeter of the shape is 252 cm

Show that \(y = 126 - 45x \) [2 marks]

Not drawn accurately

12 (b) The area of the shape is A cm2

Show that $A = 2520x - 450x^2$

[2 marks]

12 (c) Use differentiation to work out the maximum value of A as x varies.

[3 marks]

Answer ________________________________
13 \(f(x) = 3x^2 + 6 \) for all \(x \)
 \(g(x) = \sqrt{x - 5} \quad x \geq 5 \)

13 (a) Work out the value of \(gf(4) \) [2 marks]

Answer

13 (b) Show that \(fg(x) \) can be written in the form \(a(x - a) \) where \(a \) is an integer. [2 marks]

Answer
Use the sine rule to work out the size of obtuse angle x.

[3 marks]

Answer: __________ degrees
Here is a sketch of the curve $y = ab^{-x}$ where a and b are positive constants.

(0, 3) and (2, 0.48) lie on the curve.

Work out the values of a and b.

$[4 \text{ marks}]$

\[
\begin{align*}
 a &= \\
 b &=
\end{align*}
\]
16. Simplify \(\frac{8x^3 - 50x}{2x(6x^2 - x - 35)} \)

Give your answer in the form \(\frac{ax + b}{cx + d} \) where \(a, b, c \) and \(d \) are integers.

\[\text{Answer: } \]
By multiplying both sides of the equation by \(x^{\frac{1}{2}} \)

Solve \(2x^{\frac{3}{2}} - 3x^{\frac{1}{2}} = 7x^{\frac{1}{2}} \) for \(x > 0 \)

Give your answer to 3 significant figures.

You **must** show your working. [4 marks]
How many **odd** numbers greater than 30 000 can be formed from these digits 2 4 6 7 8 with no repetition of any digit? [3 marks]

Answer ____________________________
19 \hspace{1cm} f(x) = 3x^3 - 2x^2 - 7x - 2

19 (a) \hspace{1cm} \text{Use the factor theorem to show that } (3x + 1) \text{ is a factor of } f(x). \hspace{3.5cm} [2 \text{ marks}]

19 (b) \hspace{1cm} \text{Factorise } f(x) \text{ fully.} \hspace{3.5cm} [3 \text{ marks}]

Answer __
20. \(VABCD \) is a pyramid with a horizontal rectangular base \(ABCD \).

\(V \) is directly above the centre of the base.

\[VA = VB = VC = VD = 10 \text{ cm} \]

\[AB = 8 \text{ cm} \quad BC = 6 \text{ cm} \]

\(M \) is the midpoint of \(BC \).
Work out the size of angle VMD.

[5 marks]

Answer: __________ degrees
21 Show that \((2n + 3)^3 + n^3\) is divisible by 9 for all integer values of \(n\). [4 marks]