There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED
Answer all questions in the spaces provided.

1 (a) \[
\frac{y^6 \times y}{y^m} = y^4
\]
Circle the value of \(m\). [1 mark]

\[-2 \quad 1.5 \quad 2 \quad 3 \]

1 (b) \[a^n \times a^5 = a^5\]
Work out the value of \(n\). [1 mark]

Answer

1 (c) \[(c^5)^p = (c^2)^6\]
Work out the value of \(p\). [2 marks]

Answer
2. Solve \(\sqrt[3]{7x - 13} = 2 \)

\[x = \frac{2^3 + 13}{7} = \frac{27}{7} \]

3. \[3a(2x - 1) + 4(ax + 5) \equiv 60x + b \]

Work out the values of \(a \) and \(b \).

\[a = \frac{60 - 4}{2} = 28 \]

\[b = 4 \times 5 = 20 \]
4 \(ABC \) is a straight line with \(AB : BC = 5 : 2 \)

Work out the coordinates of \(C \).

[4 marks]

Answer \((,)\)
5 \[y = 2x^{10} - \frac{3}{x^2} \]

Work out \(\frac{dy}{dx} \) \[\text{[3 marks]} \]

Answer

6 Simplify fully \(\frac{15x^2y - 5xy^2}{12x - 4y} \) \[\text{[3 marks]} \]

Answer
7. \(ABCD\) is a rhombus with side length 8 cm
Angle \(ABC = 60^\circ\)

Work out the area of the rhombus.
Give your answer in the form \(a\sqrt{b}\) cm\(^2\) where \(a\) and \(b\) are integers.

Answer \(_________________________\) cm\(^2\)
The curve \(y = 2x^3 - 3x^2 - 12x + 6 \)

has a maximum point at \(L (-1, 13) \)

has a minimum point at \(M (2, -14) \)

intersects the \(y \)-axis at \(N \).

The curve crosses the \(x \)-axis at three distinct points.

On the axes below, sketch the curve.

Label the points \(L, M \) and \(N \) on your sketch.
A, B, C and D are points on a circle.

\[\angle BCA = x \quad \angle ACD = 2x \quad \angle CAD = 3x \quad \angle CAB = 4x \]

Prove that AC is a diameter.

[4 marks]
10

\[f(x) = \left(\frac{9x}{2} \right)^{-1} \]

\[g(x) = \sqrt{1 - px^3} \text{ where } p \text{ is a constant.} \]

Given that \(f\left(\frac{1}{3} \right) = g\left(\frac{1}{3} \right) \) work out the value of \(p \).

[5 marks]

Answer ____________________________________
11 A circle, centre C, touches the y-axis at the point (0, 2)

The line \(y = k \) intersects the circle at the points (1, \(k \)) and (5, \(k \))

Work out the equation of the circle.

[3 marks]

Answer: ________________________________
Work out the length of BC.

$$AB = 4 \text{ cm} \quad AC = 7 \text{ cm} \quad \cos x = \frac{2}{7}$$

Answer __ cm

Rearrange $t = \frac{3w^3 + a}{w^3 - 2}$ to make w the subject.

Answer __
14 Rationalise and simplify \(\frac{\sqrt{3} - 7}{\sqrt{3} + 1} \)

Give your answer in the form \(a + b\sqrt{3} \) where \(a \) and \(b \) are integers.

[4 marks]
15 Point A lies on the curve \(y = x^2 + 5x + 8 \)

The x-coordinate of A is – 4

15 (a) Show that the equation of the normal to the curve at A is \(3y = x + 16 \)

[5 marks]
15 (b) The normal at A also intersects the curve at B.

Work out the x-coordinate of B.

Answer ________________________________
16 The coefficient of the x^4 term in the expansion of $(2x + a)^6$ is 60

Work out the possible values of a. [4 marks]

Answer ________________________________
Solve the simultaneous equations

\[2a + b - c = 8 \]
\[4a - 3b - 2c = -9 \]
\[6a + 3b + c = 0 \]

[5 marks]

\[a = \quad b = \quad c = \]
18 Solve \(\frac{2}{x} - \frac{1}{3} = 12 \frac{1}{4} \)

[3 marks]

\[x = \underline{\text{ }} \]

19 \(f(x) = 2x^3 - 12x^2 + 25x - 11 \)

Use differentiation to show that \(f(x) \) is an increasing function for all values of \(x \).

[4 marks]
20 (a) Show that \(2\cos^2 \theta = 2 - 2\sin^2 \theta\) \[1\text{ mark}\]

20 (b) Hence, solve \(2\cos^2 \theta + 3\sin \theta = 3\) for \(0 < \theta < 180^\circ\) \[4\text{ marks}\]

Answer ___

END OF QUESTIONS