1 Limits

1.1 Graphically

The easiest way to get an intuition about limits is to first look at them graphically.

Informally we say, a limit exists at a point if we can trace THE CURVE (the function) inwards with our fingers from either side of the point (from both the left and right of the x value that we are finding the limit at) and tend towards the same y value (reach the same height on the y axis)

Let's look at the limits of the following functions to demonstrate this idea:

Let's look at some slightly harder examples where the limit does not exist

1) The graph below shows the graph of f(x)

a) Does $\lim_{x \to -3} f(x)$ exist? If so, state what it is.

b) Does
$$\lim_{x \to 1} f(x)$$
 exist? If so, state what it is.

c) Does
$$\lim_{x\to 2} f(x)$$
 exist? If so, state what it is.

d) Does
$$\lim_{x \to 4} f(x)$$
 exist? If so, state what it is

e) Does
$$\lim_{x\to 6} f(x)$$
 exist? If so, state what it is.

2)

Find

i.	$\lim_{x \to \infty} f(x)$
ii.	$\lim_{x \to -2^{+}} f(x)$
iii.	$\lim_{x \to 0} f(x)$
	$x \rightarrow 3$
IV.	$\lim_{x\to 5^-} f(x)$

Page 4 of 10

© MyMathsCloud

Algebraically 1.2

For the easiest types of questions we can simply substitute the numbers into the function and we are done. Let's see how this work with a few basic examples.

$\lim_{x \to 3} 2x$	$\lim_{x \to 2} (x^2 + 5x)$	$\lim_{x \to -2} \frac{x^2 + 4}{x - 2}$	$\lim_{x\to 2}(2x-1)^4$	$\lim_{x\to\pi}(3\sin x-2x)$
Let's colour code for ease of explanation	Let's colour code for ease of explanation	$x \rightarrow 0$ $x - 2$ Let's colour code for ease of explanation	Let's colour code for ease of explanation	Let's colour code for ease of explanation
$\lim_{x\to 3} 2x$	$\lim_{x \to 2} (x^2 + 5x)$	$x^{2} + 4$	$\lim_{x\to 2}(2x-1)^4$	$\lim_{x \to \pi} (3\sin x - 2x)$
This tells us to replace x with 3 in the expression $2x$	This tells us to replace x with 2 in the expression $x^2 + 5x$	$\lim_{x \to 0} \frac{x + 1}{x - 2}$ This tells us to replace x with 0 in the	This tells us to replace x with 2 in the expression $(2x - 1)^4$	This tells us to replace x with π in the expression $(3 \sin x - 2x)$
Substituting gives 2(3)	Substituting gives $(2^2 + 5(2))$	expression $\frac{x+4}{x-2}$	Substituting gives $(2(2) - 1)^4$	Substituting gives
= 6	= 14	Substituting gives $\frac{0^2 + 4}{0 - 2}$	$= 3^4$ = 81	$(3\sin\pi - 2\pi)$ $= 3(0) - 2(\pi)$
		= -2		$= -2\pi$

For all the above examples we say the limit exists and whatever number we get is the value of the limit. However, we don't always get a non-zero numbers or 'nice' numbers. Sometimes we get zero and undefined answers. Let's look at a few examples

$\lim_{x \to \infty} \frac{x}{2}$	$\lim_{x \to 0} \frac{x}{5}$	$\lim_{x \to \infty} \frac{3}{x}$
Substitute $x = \infty$	Substitute $x = 0$	Substitute $x = \infty$
$\lim_{x\to\infty}\frac{x}{2}$	$\lim_{x\to 0}\frac{x}{5}$	$\lim_{x\to\infty}\frac{3}{x}$
$=\frac{\infty}{2}$	$=\frac{0}{5}$	$=\frac{3}{\infty}$
A very very big number over a much smaller negligible number in comparison will always remain a very very big number	Zero divided by a non-zero number is always 0	If we divide by a very very large number we are practically 0. Think about it. The more slices you
= ∞	= 0	we kept cutting the cake size would get smaller and smaller until eventually we would barely get
We say the limit depen't exist We call	We say the limit exists and is equal	any cake.
this undefined.		So here we get $= 0$
		We say the limit exists and is equal to zero

Let's summarise this

$\frac{\text{any non zero number}}{0} = \text{undefined}$	$\frac{\pm\infty}{\text{any non infinte number}} = \pm\infty$	$\frac{0}{\text{any nonzero number}} = 0$	$\frac{\text{any non infinite number}}{\pm \infty} = 0$
We say the limit doesn't exist	We say the limit doesn't exist	We say the limit exists and is equal to zero	We say the limit exists and is equal to zero

1∞

 ∞^0

Unfortunately, we can also get worse than this. We can substitute and get one of the following 7 indeterminate forms: $\frac{0}{0}$ $\frac{\pm\infty}{\pm\infty}$ 00

0(∞)

It becomes a process of elimination of what to do next when this occurs. We must use one of the following 7 methods on the following pahge (we try in the order of left to right and see which works) and then substitute again

 $\infty - \infty$

© MyMathsCloud

Do I have a fraction and can I factorise and cancel? Your factorising needs to be good (see my cheat sheet if not)	Do I have a fraction with a square root in the numerator or denominator? Rationalise!	Do I have a fraction and can I differentiate the numerator and denominator? Note: You need to have $\frac{0}{0}$ to be able to do this You can differentiate any number of times!	Do I have trig? Can I use the identities: $sin^2x + cos^2x = 1$ $1 + tan^2x = \sec^2 x$ $1 + cot^2x = \csc^2 x$ $sin 2x = 2sin x \cos x$ $cos 2x = cos^2x - sin^2x$ $sin(a \pm b) = sinacosb \pm cosasinb$ $cos(a \pm b) = cosacosb \mp sinasinb$	Do I have trig and is my limit tending to zero $\sin \theta \approx \theta$ $\cos \theta \approx 1 - \frac{\theta^2}{2}$ $\tan \theta \approx \theta$	Is x tending to infinity? Do I get $\frac{\pm \infty}{\pm \infty}$ when I substitute?	Have the 6 methods to the left failed? Use squeeze theorem! This is for $x \rightarrow 0$ and $x \rightarrow \infty$ (this type usually occurs for trig , factorials or powers of x)
Factorise and cancel Example 1: $\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$ substitution yields $\frac{0}{0}$ Let's factorise first: $\lim_{x \to 2} \frac{(x-2)(x-2)}{x-2}$ $= \lim_{x \to 2} (x - 2)$ Now we can substitute 2 - 2 = 0 Example 2: $\lim_{x \to -1} \frac{x^2 - x - 2}{x^2 - 4x - 5}$ substitution yields $\frac{0}{0}$ Let's factorise first: $\lim_{x \to -1} \frac{(x-2)(x+1)}{(x-5)(x+1)}$ $= \lim_{x \to -1} \frac{x - 2}{x - 5}$ Now we can substitute $= \frac{-1 - 2}{-1 - 5}$ $= \frac{-3}{-6} = \frac{1}{2}$	Rationalise the numerator or denominator and cancel Example: $\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4}$ substitution yields $\frac{0}{0}$ Let's rationalise the numerator Consider the function $\frac{\sqrt{x+5-3}}{x-4} \approx \frac{\sqrt{x+5+3}}{\sqrt{x+5+3}}$ $\lim_{x \to 4} \frac{x+5-9}{(x-4)(\sqrt{x+5+3})}$ $= \lim_{x \to 4} \frac{x-4}{(x-4)(\sqrt{x+5}+3)}$ Now we can cancel $= \lim_{x \to 4} \frac{1}{\sqrt{x+5}+3}$ $= \frac{1}{6}$	Apply L' Hopital's Rule It is important to know that you can only apply L' Hopital's Rule as long as you have an indeterminate form and you can apply this as many times as you want! We just differentiate the numerator and denominator. Example: $\lim_{x \to -3} \frac{x^3 + 9x^2 + 27x + 27}{x^3 + 8x^2 + 21x + 18}$ substitution yields $\frac{0}{0}$ Use L'Hopital's (differentiate the numerator and denominator) $\lim_{x \to -3} \frac{3x^2 + 18x + 27}{3x^2 + 16x + 21}$ substitution still yields $\frac{0}{0}$ Use L'Hopital's again $\lim_{x \to -3} \frac{6x + 18}{6x + 16}$ Substitute $= \frac{6(-3) + 18}{6(-3) + 16}$ $= \frac{0}{-2} = 0$	If trig we use a trig identity and maybe simplify after Example: $\lim_{x \to \pi} \frac{tan^2x}{1 + secx}$ substitution yields $\frac{0}{0}$ Let's use a trig identity first in the numerator $\lim_{x \to \pi} \frac{\sec^2 x - 1}{1 + secx}$ Factorise (difference of two squares) $\lim_{x \to \pi} \frac{(\sec x + 1)(\sec x - 1)}{1 + secx}$ $= \lim_{x \to \pi} (\sec x - 1)$ $= \sec \pi - 1$ $= \frac{1}{\cos \pi} - 1$ $= -1 - 1$ $= -2$	Use small angle approximations We can only do this if trig and $\rightarrow 0$. It is important that you realise this! As soon as a limit tends to zero for trig, you should check first whether small angle approximations will help! Example: $\lim_{x\to 0} \frac{\sin x}{x}$ substitution yields $\frac{0}{0}$ Use small angle approx. $\lim_{x\to 0} \frac{x}{x}$ $\lim_{x\to 0} 1$ = 1 when $\sin \theta = \theta$:	Divide the numerator and denominator by the highest power in the denominator and then the "bottom- heavy" terms tend to zero (the terms with a number in the numerator and x, x ² etc in the denominator). See the 4 columns below for detailed examples on this.	Squeeze theorem1 This basically says if we can find a smaller and bigger function that have the same limit, then the function "squeezed between them" must also have the same limit. Example 1: $\lim_{x \to 0} x \cos\left(\frac{1}{x}\right)$ Substitution gives $0 \times \infty$ Instead us squeeze theorem Compare to $- x $ and $ x $ $\lim_{x \to 0} - x = 0$ $\lim_{x \to 0} x = 0$ $- x \le x \cos\left(\frac{1}{x}\right) \le x $ since $-1 \le \cos\left(\frac{1}{x}\right) \le 1$ $\lim_{x \to \infty} x \cos\left(\frac{1}{x}\right) = 0$ Example 2: $\lim_{x \to \infty} \frac{\sin x}{x}$ Substitution gives $\frac{\infty}{\infty}$ $\lim_{x \to \infty} (-\frac{1}{x}) = 0$ $\lim_{x \to \infty} (\frac{1}{x}) = 0$ $\lim_{x \to \infty} (\frac{1}{x}) = 0$ By squeeze theorem $\lim_{x \to \infty} (\frac{\sin x}{x}) = 0$ Example 2: $\lim_{x \to \infty} \frac{\sin x}{x} \le \frac{1}{x}$ By squeeze theorem $\lim_{x \to \infty} (\frac{\sin x}{x}) = 0$

Limits tending to infinity:

Bottom-heavy	Even powers	Top-heavy	Careful if you have a root in the
(denominator has the highest power)	(tie with highest power of numerator & denominator)	(numerator has the highest power)	denominator. If $x \rightarrow \infty$ divide inside
			root by x^2 and outside by x
$\lim_{x \to \infty} \frac{2x+3}{4x^2-5}$	$\lim_{x \to \infty} \frac{5x^2 + 5x - 5}{6x^2 - 2x + 5}$	$\lim_{x \to \infty} \frac{10x^2 + x}{4x - 1}$	
Highest power in denominator is a 2 due to	Highest power in denominator is a 2 due to x^2 term, so	Highest power in denominator is a 1 due to	$\lim_{x \to \infty} \frac{2x}{\sqrt{4x^2 + 1}}$
x^2 term, so let's divide all terms by this	let's divide all terms by this	x term, so let's divide all terms by this	
$\lim_{x \to \infty} \frac{\frac{2x}{x^2} + \frac{3}{x^2}}{\frac{4x^2}{x^2} - \frac{5}{x^2}} = \lim_{x \to \infty} \frac{\frac{2}{x} + \frac{3}{x^2}}{4 - \frac{5}{x^2}}$ Substitute and get $\frac{0+0}{x} = 0$	$\lim_{x \to \infty} \frac{\frac{5x^2}{6x^2} + \frac{5x}{x^2} - \frac{5x}{x^2}}{\frac{5x^2}{x^2} - \frac{2x}{x^2} + \frac{5x}{x^2}} = \lim_{x \to \infty} \frac{5 + \frac{5}{x} - \frac{5}{x^2}}{6 - \frac{2}{x} + \frac{5}{x^2}}$ Substitute and get $\frac{5+0-0}{6-0+0} = \frac{5}{6}$	$\lim_{x \to \infty} \frac{\frac{10x^2}{x} + \frac{x}{x}}{\frac{4x}{x} - \frac{1}{x}} = \lim_{x \to \infty} \frac{10x + 1}{4 - \frac{1}{x}}$ Substitute and get $\frac{\infty}{4 - 0} = \infty$	$\lim_{x \to \infty} \frac{\frac{2x}{x}}{\sqrt{\frac{4x^2}{x^2} + \frac{1}{x^2}}}$ $\lim_{x \to \infty} \frac{2}{\sqrt{\frac{1}{x^2} + \frac{1}{x^2}}}$
4-0 Shortcut method: Here the highest power in the denominator is greater than that of the numerator hence bottom-heavy (the bottom becomes very large) and the limit is zero	Shortcut method: Here the ratio of the highest power terms which are x terms is $\frac{3}{2}$. Hence limit $=\frac{3}{2}$	Shortcut method: Here the highest power in the numerator is greater than that of the denominator hence top-heavy and hence there is no limit (infinite)	$\sqrt{4 + \frac{1}{x^2}}$ Substitute $= \frac{2}{\sqrt{4+0}}$
We can apply a shortcut for these types. If the • numerator wins, the	in the limit will be $y = 0$		$=\frac{2}{2}=1$
 denominator wins, t There is a tio, the lin 	he limit will be $y = \pm \infty$	so coefficients of terms with highest newer	

Denomination winds, the limit will be a finite number which is the ratio of terms with those coefficients of terms with highest power

1.3 Tending To A Number

1.3.1 L'Hopitals

Note: You can use this when other types also work. It just makes your life easier.

1.4 Tending To Infinity

5) $\lim_{x \to \infty} \frac{3-x}{x^2+3}$

 $6) \quad \lim_{x \to \infty} \frac{5x^2}{x+4}$

 $7) \quad \lim_{x \to \infty} \frac{x^3 - 27}{x - 3}$

8)

9)

 $\lim_{x \to 0} \frac{x^2 - 2}{\cos x}$

 $\lim_{n \to \infty} \frac{5n^2 - 4}{n^2 - 1}$

10) $\lim_{x \to \infty} \frac{x^2 - 6}{2 + x - 3x^2}$

11) $\lim_{x \to \infty} \frac{4x^2 - 2x + 15}{x^4 + 6}$

 $\lim_{x \to \infty} \frac{5x^3 + 1}{10x^3 - 3x^2 + 7}$

	Easy		Medium		Hard
1)	$\lim_{x\to\infty}\frac{x}{2}$	1)	$\lim_{x \to \infty} \frac{x+3}{(5-x)^2}$	1)	$\lim_{x \to -\infty} \frac{2x}{\sqrt{4x^2 + 1}}$
2)	$\lim_{x \to \infty} \frac{3x+5}{2x+4}$	2)	$\lim_{x \to -\infty} \frac{x+3}{(5-x)^2}$	2)	$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 2}}{4x + 3}$
3)	$\lim_{x \to \infty} \frac{x+8}{x-3}$	3)	$\lim_{x \to -\infty} \frac{3x^2 + 1}{(3 - x)(3 + x)}$	3)	$\lim_{n\to\infty}\frac{2^n+3^n}{2^n+(-4)^n}$
4)	$\lim_{x \to \infty} \frac{x-5}{7x^2 + 10x}$				

1.5 Trig

	Easy		Medium		Hard
1)	$\lim_{x \to \frac{\pi}{2}} \sin x$	1)	$\lim_{x \to 0} \frac{\sin 2x}{x}$	1)	$\lim_{x \to \pi} \frac{\tan^2 x}{1 + \sec x}$
2)	$\lim_{x\to 1}\cos\frac{\pi x}{3}$	2)	$\lim_{x \to 0} \frac{\sin^2 3x}{5x^2}$	2)	$\lim_{x \to \frac{3\pi}{2}} \frac{6\cot^2 x}{1 + cosec x}$
3)	$\lim_{x\to 0} \sec 2x$	3)	$\lim_{x \to 0} \frac{\tan^2 5x}{10x^3}$	3)	$\lim_{x \to 0} \frac{\cos\left(x + \frac{\pi}{2}\right)}{2x}$
4)	$\lim_{x \to \pi} \tan x$	4) 5)	$\lim_{x \to 0} \frac{1 - \cos x}{x}$ $\lim_{x \to 0} \frac{1 - \cos x}{x}$	4)	$\lim_{x \to 0} \frac{\cos\left(x - \frac{\pi}{3}\right) - \frac{1}{2}}{x}$
5)	$\lim_{x \to \frac{\pi}{6}} \sin^3 x \sec^4 x$	6)	$\lim_{x \to 0} \frac{1 - x}{5x}$		
6)		7)	$\lim_{x \to 0} \frac{\cos 2x \tan 2x}{x}$		

1.6 One Sided

These are not as easy to calculate as when we had the graphs.

Example 1: $f(x) = \begin{cases} -3x + 7, x \le 2\\ x^2 - 5, x > 2 \end{cases}$	Example 2: Find $\lim_{x \to -1^{-}} \frac{2x+1}{3x-1}$ and $\lim_{x \to -1^{+}} \frac{2x+1}{3x-1}$	Example 4: Find $\lim_{x \to 2} \frac{ x-2 }{x-2}$
Determine $\lim_{x\to 2} f(x)$ if it exists	$\lim_{x \to -1^{-}} \frac{2x+1}{3x-1} = \frac{2(-1)+1}{3(-1)-1} = \frac{-1}{-4} = \frac{1}{4}$	We need to have knowledge of the modulus functions in order to be able to write this as a piecewise function
Here we have two functions. Let's colour code. $f(x) = \begin{cases} -3x + 7, x \le 2\\ x^2 - 5, x > 2 \end{cases}$	$\lim_{x \to -1^+} \frac{2x+1}{3x-1} = \frac{2(-1)+1}{3(-1)-1} = \frac{-1}{-4} = \frac{1}{4}$	$f(x) = \begin{cases} \frac{x-2}{x-2} = 1, & x \ge 2 \end{cases}$
Once behaves like $-3x + 7$ for values of x less than or equal to 2 and the other behaves like $x^2 - 5$ for values bigger than 2	Example 3: Find $\lim_{x\to 1^+} \frac{x+7}{x-1}$ and $\lim_{x\to 1^-} \frac{x+7}{x-1}$ This is harder since we get $\frac{8}{0}$ for both when we substitute, but	$f(x) = \begin{cases} \frac{-(x-2)}{x-2} = -1, & x \le 2 \end{cases}$ Simplifying gives $f(x) = \begin{cases} 1, & x \ge 2 \\ -1, & x \le 2 \end{cases}$
We want to find the limit as x tends to 2, but the function behaves differently either side of 2, so we have to find 2 limits (one for just greater than 2 and the other for just less than 2) $\lim_{x \to 2^+} f(x) = (2)^2 - 5 = -1$	We need to know whether our answer is ∞ or $-\infty$. $\lim_{x \to 1^+} \frac{x+7}{x-1} = \infty \text{ and } \lim_{x \to 1^-} \frac{x+7}{x-1} = -\infty$ If you're struggling to see why one is plus and one is minus consider the following: • $\lim_{x \to 1^+}$ means plug in a value just greater than one, say 1.0002 and the denominator is positive hence tends to $\pm\infty$	We want to find the limit as x tends to 2, but the function behaves differently either side of 2, so we have to find 2 limits (one for just greater than 2 and the other for just less than 2) Let's now find the limits $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 1 = 1$
$\lim_{x \to 2^{-}} f(x) = 3x + 7 = 3(2) - 7 = -1$ Both limits equal -1, so the limit exists	• $\lim_{x\to 1^-}$ means plug in a value just less than one, say 0.999999 and the denominator is negative hence tends to $-\infty$	$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} (-1) = -1$ One limit is -1 and the other is 1 so limit doesn't exist

Easy

1) $f(x) = \begin{cases} x^2 - 1, x < 1 \\ x^2 + 1, x > 1 \end{cases}$ Determine $\lim_{x \to 1} f(x)$ if it exists

2)
$$g(x) = \begin{cases} \sqrt{2x - 1}, x < 1 \\ \frac{x^3 + 1}{2}, x > 1 \end{cases}$$

Find $\lim_{x \to -1} g(x)$

3)
$$f(x) = \begin{cases} \frac{2x+1}{3x-1}, x \le -1\\ \frac{1}{(x-1)^2}, x > -1 \end{cases}$$

Find $\lim_{x \to -1} f(x)$

4) $h(x) = \begin{cases} 3x^3 - 2, x < 0\\ (x+1)^2, x \ge 0 \end{cases}$
Find $\lim_{x \to 0} h(x)$

Medium

- 1) $\lim_{x \to 2^{-}} \frac{3x-1}{x+4}$ and $\lim_{x \to 2^{+}} \frac{3x-1}{x+4}$ 2) $\lim_{x \to -3^{-}} \frac{x+1}{2x-3}$ and $\lim_{x \to -3^{+}} \frac{x+1}{2x-3}$ 3) $\lim_{x \to 3^{+}} \frac{x+8}{x-3}$ and $\lim_{x \to 3^{-}} \frac{x+8}{x-3}$
- $x \rightarrow 3^+ x 3 \qquad x \rightarrow 3^- x 3$
- 4) $\lim_{x \to -2^+} \frac{x-1}{x+2}$ and $\lim_{x \to -2^-} \frac{x-1}{x+2}$
- 5) $\lim_{x \to 0^-} \frac{5x-1}{\sqrt{x^2-x}}$ and $\lim_{x \to -1^+} \frac{5x-1}{\sqrt{x^2-x}}$
- 6) $\lim_{x \to -0.5^{-}} \frac{\sqrt{9x^2 2}}{2x + 1} \text{ and } \lim_{x \to -0.5^{+}} \frac{\sqrt{9x^2 2}}{2x + 1}$

Hard

- 1) $\lim_{x \to 0} |x|$ 2) $\lim_{x \to 1} |x - 1|$ 3) $\lim_{x \to 0} \frac{4x}{|x|}$
 - 4) $\lim_{x \to 2} \frac{|x-2|}{x-2}$

1.7 Squeeze Theorem or L'Hopitals

1) li

2)

3)

4)

5)

 $\lim_{x \to \infty} \frac{\sin 3x}{x}$

 $\lim_{x \to \infty} \frac{\cos x}{2x}$

Easy	Medium		Hard
$\lim_{x\to\infty}\cos\left(\frac{1}{x}\right)$	1) $\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$	1)	$\lim_{x\to\infty}\frac{x!}{x^x}$
$\lim_{x\to\infty}\sin\left(\frac{1}{x}\right)$	2) $\lim_{x \to \infty} x \cos\left(\frac{1}{x}\right)$	2)	$\lim_{x\to\infty}\frac{x^x}{(2x)!}$
$\lim_{x \to \infty} \frac{\sin x}{x}$			

© MyMathsCloud

Summary – showing when a limit does exist versus doesn't exist					
Graphically	Algebraically	Piecewise Functions - Show 1 sided limits are			
	Substitute and show you get any	equal			
	whole number (not $\infty or - \infty$)				
	Example where a limit exists:	Example where a limit exists:			
¥.		$(-3x+7, x \le 2)$			
4	$\lim 2x$	$f(x) = \begin{cases} x^2 - 5, x > 2 \end{cases}$			
	$x \rightarrow 3$				
	Let's colour code for eace of	Determine $\lim_{x \to \infty} f(x)$ if it exists			
$-\frac{2}{7}$	overlagation	$x \rightarrow 2$			
	explanation	Here we have two functions.			
	lim 2r	$(-3x+7, x \le 2)$			
	$x \rightarrow 3$	$f(x) = \begin{cases} x^2 - 5, x > 2 \end{cases}$			
• Does $\lim_{x \to \infty} f(x)$ exist?	This tells us to replace x with 3 in	$\lim_{x \to \infty} f(x) = (2)^2 - 5 = -1$			
<i>x</i> →-3 ⁷ (7)	the expression $2x$	$x \rightarrow 2^{+1}$			
$\lim_{x \to \infty} f(x) = -1$ and $\lim_{x \to \infty} f(x) = -1$		$\lim_{x \to -\infty} f(x) = 3x + 7 = 3(2) - 7 = -1$			
$x \rightarrow -3^+$ (1) $x \rightarrow -3^-$ (1)	Substituting gives $2(3) = 6$.	$x \rightarrow 2^{-1}$ (10) $x \rightarrow 1^{-1}$ $x \rightarrow 2^{-1}$			
$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{-}} f(x)$	So we get a number which means	Both limits equal -1 so the limit exists			
$\therefore \lim_{x \to \infty} f(x)$ exists	that the limit exists				
x→-3 ⁷ (c)		Example where a limit doesn't exist:			
• Does $\lim_{x \to 2} f(x)$ exist?	Example where a limit doesn't	x-2			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	exist.	$\frac{11111}{x \rightarrow 2} \ \overline{x-2}$			
$\lim_{x \to 2^+} f(x) = 1$ and $\lim_{x \to 2^-} f(x) = 1$	2				
$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} f(x)$	$\lim_{x \to 0} \frac{1}{x}$	We need to have knowledge of the modulus			
$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x)$		functions in order to be able to write this as a			
$\therefore \lim_{x \to 0} f(x)$ exists	Substituting gives $\frac{2}{2}$ which is	piecewise function			
	undefined and therefore the limit	We can write this as a piecewise function:			
• Does $\lim_{x \to 4} f(x)$ exist?	doesn't exist	( r-2			
		$\int \frac{x-2}{x-2} = 1, \qquad x \ge 2$			
$\lim_{x \to 4^+} f(x) = -1$ and $\lim_{x \to 4^-} f(x) = -1$		$f(x) = \begin{cases} \frac{-(x-2)}{2} = -1, & x < 2 \end{cases}$			
$\lim f(x) = \lim f(x)$		$\begin{pmatrix} x-2 \end{pmatrix}$			
$x \rightarrow 4^+$ , $x \rightarrow 4^-$ , $x \rightarrow 4^-$		Simplifying gives			
$\therefore \lim_{x \to 4} f(x) \text{ exists}$		$(1, x \ge 2)$			
• Does $\lim_{x \to \infty} f(x)$ exist?		$f(x) = \begin{cases} -1, & x \leq 2 \end{cases}$			
$x \to 1$		, _			
$\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to \infty} f(x) = 1$		$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} 1 = 1$			
$\lim_{x \to 1^+} f(x) = 0 \text{ and } \lim_{x \to 1^-} f(x) = 1$		$x \rightarrow 2$ ' $x \rightarrow 2$ '			
$\lim_{x \to 1^+} f(x) \neq \lim_{x \to 1^-} f(x)$		$\lim f(x) = \lim (-1) = -1$			
$\lim_{x \to 1^+} f(x)$ does not exist		$x \rightarrow 2^{-1}$ $x \rightarrow 2^{-1}$			
$\frac{1}{x \to 1}$ (x) does not exist		One limit is $-1$ and the other is 1 so limit			
• Does $\lim_{x \to 0} f(x)$ exist?		doesn't exist			
<i>x</i> →ο					
$\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = \infty$					
$\lim_{x \to 6^+} f(x) = 0 \text{ and } \lim_{x \to 6^-} f(x) = 0$					
$\lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^+} f(x)$					
$x \rightarrow 0$ $x \rightarrow 0$					
$\therefore \lim_{x \to 6} f(x)$ does not exist					