AP^{\circledR} Calculus AB 2002 Free-Response Questions

> The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program ${ }^{\circledR}$. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.

CALCULUS AB
 SECTION II, Part A
 Time- $\mathbf{4 5}$ minutes
 Number of problems- $\mathbf{3}$

A graphing calculator is required for some problems or parts of problems.

1. Let f and g be the functions given by $f(x)=e^{x}$ and $g(x)=\ln x$.
(a) Find the area of the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$.
(b) Find the volume of the solid generated when the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$ is revolved about the line $y=4$.
(c) Let h be the function given by $h(x)=f(x)-g(x)$. Find the absolute minimum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$, and find the absolute maximum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$. Show the analysis that leads to your answers.

2002 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

2. The rate at which people enter an amusement park on a given day is modeled by the function E defined by

$$
E(t)=\frac{15600}{\left(t^{2}-24 t+160\right)}
$$

The rate at which people leave the same amusement park on the same day is modeled by the function L defined by

$$
L(t)=\frac{9890}{\left(t^{2}-38 t+370\right)}
$$

Both $E(t)$ and $L(t)$ are measured in people per hour and time t is measured in hours after midnight. These functions are valid for $9 \leq t \leq 23$, the hours during which the park is open. At time $t=9$, there are no people in the park.
(a) How many people have entered the park by 5:00 P.M. $(t=17)$? Round your answer to the nearest whole number.
(b) The price of admission to the park is $\$ 15$ until 5:00 P.M. $(t=17)$. After 5:00 P.M., the price of admission to the park is $\$ 11$. How many dollars are collected from admissions to the park on the given day? Round your answer to the nearest whole number.
(c) Let $H(t)=\int_{9}^{t}(E(x)-L(x)) d x$ for $9 \leq t \leq 23$. The value of $H(17)$ to the nearest whole number is 3725 . Find the value of $H^{\prime}(17)$, and explain the meaning of $H(17)$ and $H^{\prime}(17)$ in the context of the amusement park.
(d) At what time t, for $9 \leq t \leq 23$, does the model predict that the number of people in the park is a maximum?
3. An object moves along the x-axis with initial position $x(0)=2$. The velocity of the object at time $t \geq 0$ is given by $v(t)=\sin \left(\frac{\pi}{3} t\right)$.
(a) What is the acceleration of the object at time $t=4$?
(b) Consider the following two statements.

Statement I: For $3<t<4.5$, the velocity of the object is decreasing.
Statement II: For $3<t<4.5$, the speed of the object is increasing.
Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.
(c) What is the total distance traveled by the object over the time interval $0 \leq t \leq 4$?
(d) What is the position of the object at time $t=4$?

END OF PART A OF SECTION II

CALCULUS AB
 SECTION II, Part B

Time- 45 minutes
Number of problems- $\mathbf{3}$

No calculator is allowed for these problems.

4. The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$.
(b) For what values of x in the open interval $(-2,2)$ is g increasing? Explain your reasoning.
(c) For what values of x in the open interval $(-2,2)$ is the graph of g concave down? Explain your reasoning.
(d) On the axes provided, sketch the graph of g on the closed interval $[-2,2]$.
(Note: The axes are provided in the pink test booklet only.)

5. A container has the shape of an open right circular cone, as shown in the figure above. The height of the container is 10 cm and the diameter of the opening is 10 cm . Water in the container is evaporating so that its depth h is changing at the constant rate of $\frac{-3}{10} \mathrm{~cm} / \mathrm{hr}$.
(Note: The volume of a cone of height h and radius r is given by $V=\frac{1}{3} \pi r^{2} h$.)
(a) Find the volume V of water in the container when $h=5 \mathrm{~cm}$. Indicate units of measure.
(b) Find the rate of change of the volume of water in the container, with respect to time, when $h=5 \mathrm{~cm}$. Indicate units of measure.
(c) Show that the rate of change of the volume of water in the container due to evaporation is directly proportional to the exposed surface area of the water. What is the constant of proportionality?

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
$f(x)$	-1	-4	-6	-7	-6	-4	-1
$f^{\prime}(x)$	-7	-5	-3	0	3	5	7

6. Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f^{\prime} for selected points x in the closed interval $-1.5 \leq x \leq 1.5$. The second derivative of f has the property that $f^{\prime \prime}(x)>0$ for $-1.5 \leq x \leq 1.5$.
(a) Evaluate $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x$. Show the work that leads to your answer.
(b) Write an equation of the line tangent to the graph of f at the point where $x=1$. Use this line to approximate the value of $f(1.2)$. Is this approximation greater than or less than the actual value of $f(1.2)$? Give a reason for your answer.
(c) Find a positive real number r having the property that there must exist a value c with $0<c<0.5$ and $f^{\prime \prime}(c)=r$. Give a reason for your answer.
(d) Let g be the function given by $g(x)= \begin{cases}2 x^{2}-x-7 & \text { for } x<0 \\ 2 x^{2}+x-7 & \text { for } x \geq 0 .\end{cases}$

The graph of g passes through each of the points $(x, f(x))$ given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

END OF EXAMINATION

