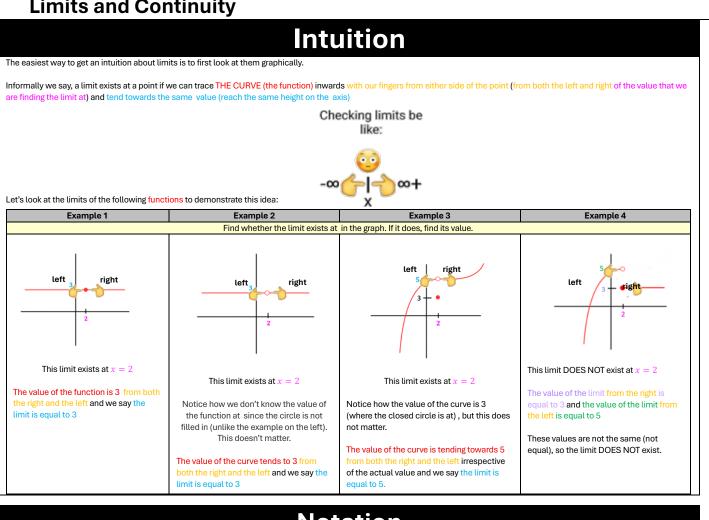
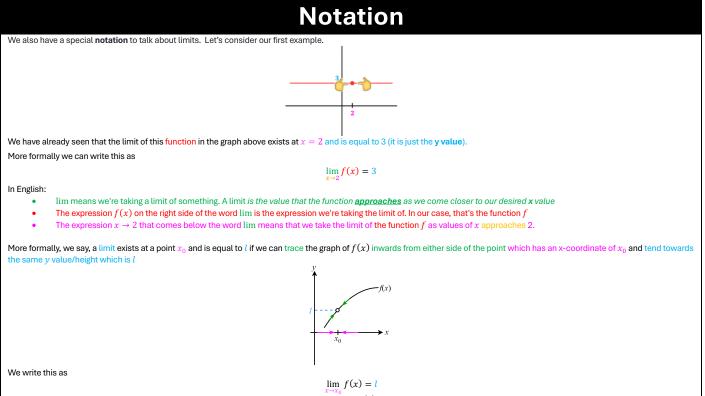
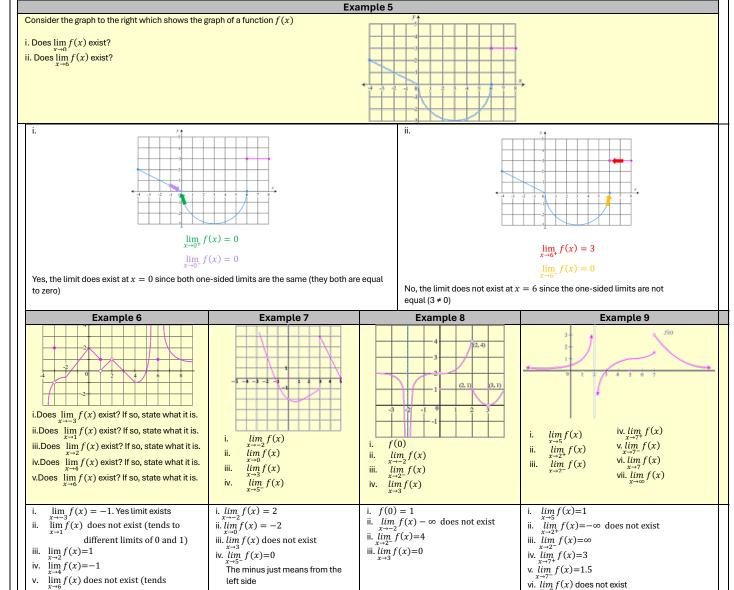
Limits and Continuity





Type 1: Finding Limits Graphically



to the same limit but it i					\	ii. $\lim_{x \to 7} f(x)$ does not exist $\lim_{x \to \infty} f(x) = 0$	
Summary of when a Limit DOES NOT EXIST (DNE) Visually							
Let's look at some situation							
	Limits are the same values from the left and right						
	2				- 2		
Limit exists		Limit exist				Limit exists at $x = 2$	
	L	imits are different value	es fro	om the left and right			
Limit DOES NOT exist at $x=0$ Limit DOES NOT ex		ES NOT exist at $x = 0$	NOT exist at $x = 0$ Limit DOES NOT exist at $x = 0$		$- \cot x = 2$	Limit DOES NOT exist at $x = 2$	
	Limits tend to infiniity			Function not de on one side of t		Limit oscillates on either eaither	
	Limit DOES NOT exist	Limit DOES NOT		Limit DOES NOT	exist		
Limit DOES NOT exist at $x = 0$	at $x = 0$	exist at $x = a$		at $x = 0$		Limit DOES NOT exist at $x = 0$	
The limit diverges to ∞ on both sides of zero which is not a number, hence we say the limit DNE.	The limit diverges to -∞ on both sides of zero . This is not a number, hence we say the limit DNE.	The limit from the right is $-\infty$ and the limit from th left is ∞ . These are unequal and also not numbers.		The limit from the righ but the function isn't of for values to the left of meaning there is no lin the left. Thus, DNE.	defined $f x = 0$	This is because of oscillatory behaviour. The graph of the function oscillates infinitely up and down as approaches 0 . $f(x)$ oscillates between -1 and 1 , hence there is no single value for the limit to exist.	

Type 2: Finding Algebraic Limits						
Immediate Substitution						
	Tending to a number					
the easiest types of questions, we car	n simply substitute the numbers into th	ne function and we are done. Let's see h	now this work with a few basic examples.			
Example 6	Example 7	Example 8	Example 9			
Find $\lim_{x\to 3} 2x$	Find $\lim_{x\to 2} (x^2 + 5x)$	Find $\lim_{x\to 0} \frac{x^2+4}{x-2}$	Find $\lim_{x\to 2} (2x-1)^4$			
$\lim_{x\to 3} 2x$	$\lim_{x \to 2} (x^2 + 5x)$	$\lim_{x\to 0} \frac{x^2+4}{x-2}$	$\lim_{x\to 2}(2x-1)^4$			
This tells us to replace x with 3 in $2x$	This tells us to replace x with 2 in $x^2 + 5x$	This tells us to replace x with 0 in $\frac{x^2+4}{x-2}$	This tells us to replace x with 2 in $(2x-1)^4$			

 $\frac{0^2 + 4}{0 - 2} = -2$

 $(2(2)-1)^4=81$

www.mymathscloud.com

For all the above examples we sa	by the limit exists and whatever	er number we get is the value of the limit.

 $2^2 + 5(2) = 14$

Tending to infinity and zero					
However, we don't always get a no	n-zero number or 'nice' numbers. Sor	netimes we get zero and undefined a	answers. Let's look at a few examples		
Example 10	Example 11	Example 12	Example 13		
Find $\lim_{x\to 0} \frac{x}{5}$	Find $\lim_{x\to 0} \frac{10}{x}$	Find $\lim_{x\to\infty}\frac{x}{2}$	Find $\lim_{x\to\infty} \frac{3}{x}$		
Substitute $x = 0$ $\lim_{x \to 0} \frac{x}{5} = \frac{0}{5}$	Substitute $x = 0$ $\lim_{x \to 0} \frac{10}{x} = \frac{10}{0}$	Substitute $x = \infty$ $\lim_{x \to \infty} \frac{x}{2} = \frac{\infty}{2}$	Substitute $x = \infty$ $\lim_{x \to \infty} \frac{3}{x} = \frac{3}{\infty}$		
Zero divided by a non-zero number is always zero. = 0 We say the limit exists and is equal to zero.	We cannot divide by zero We say the limit does not exist	A very very big number over a much smaller negligible number in comparison will remain a very very big number	If we divide by a very very large number we practically get 0. Think about it. The more slices you cut a cake into the smaller the slices become. If we kept cutting the cake size would get smaller and smaller until eventually we would barely get any cake.		
		= ∞ We say the limit DNE . This is because is not a number.	= 0 We say the limit exists and is equal to zero.		

Summary of when Limit DOES & DOES NOT EXIST (DNE) algebraically										
non-zero nun	nber = DNE	±∞ non-infinite num	ber = ±∞	rea	ub in and get a al number, we the limit DOES	aı	0 ny non-zero number	= 0		$\lim_{n \to \infty} \frac{1}{n} = 0$
We say the limit		We say the limit do See examp		exist and is equal to the number See examples 6-9		to the number We say the limit DOES exis t and is equal to zero			and is	e limit DOES exist equal to zero example 13
You should also know the following										
$\lim_{x \to \infty} \frac{1}{x} = 0$	$\lim_{x \to -\infty} \frac{1}{x} = 0$	$\lim_{x\to\infty}e^x=\infty$	$\lim_{x\to-\infty}e^x:$	= 0	$\lim_{x \to \infty} \ln x = 0$	∞	$\lim_{x \to \infty} \log x = \infty$	lin x→	$\sum_{\infty} e^{-x} = 0$	$\lim_{x \to -\infty} e^{-x} = \infty$
I Infortunataly v	uo oon oloo got	worse then evem	No. C 12 M		oubotituto in o		act what is known or	on ir	dotorminate	form

Indeterminate Form – Do 'something' first

These indeterminate forms don't tell us whether the limit exists or does not exist. Hence, they are "indeterminate". Instead, it tells us we

Factorise First to Cancel Terms

This method comes in handy when we deal with $\frac{0}{n}$ form, also the numerator and denominator are polynomials. These two things should signal the use of Step 1: Factorise the numerator and/or denominator

Step 2: Write the original expression using the factored terms Step 3: Cancel like terms from the numerator and denom

Example 14	Example 15	Example 16
Find $\lim_{x\to 4} \frac{4-x}{x^2-16}$	Find $\lim_{x \to -1} \frac{2x^2 - x - 3}{x + 1}$	Find $\lim_{x \to 2} \frac{x^3 - 8}{x^2 + x - 6}$
First, we check direct substitution:	First, we check direct substitution:	First, we check direct substitution:
$\frac{4-4}{4^2-16} = \frac{0}{0}$	$\frac{2(-1)^2 - (-1) - 3}{-1 + 1} = \frac{0}{0}$	$\frac{2^3 - 8}{2^2 + 2 - 6} = \frac{0}{0}$
This is $\frac{0}{0}$ and has polynomials	This is $\frac{0}{0}$ and has polynomials	This is $\frac{0}{0}$ and has polynomials
Step 1 $x^{2} - 16 = (x - 4)(x + 4)$ $4 - x = -(x - 4)$ Step 2 $\lim_{x \to 4} \frac{-(x - 4)}{(x - 4)(x + 4)}$ Step 3 $\lim_{x \to 4} \frac{-(x - 4)}{(x - 4)(x + 4)}$	Step 1 $2x^{2} - x - 3 = (x + 1)(2x - 3)$ Step 2 $\lim_{x \to -1} \frac{(x + 1)(2x - 3)}{(x + 1)}$ Step 3 $\lim_{x \to -1} \frac{(x + 1)(2x - 3)}{(x + 1)}$ Step 4	Step 1 $x^{3} - 8 = (x - 2)(x^{2} + 2x + 4)$ $x^{2} + x - 6 = (x + 3)(x - 2)$ Step 2 $\lim_{x \to 2} \frac{(x - 2)(x^{2} + 2x + 4)}{(x + 3)(x - 2)}$ Step 3 $\lim_{x \to 2} \frac{(x - 2)(x^{2} + 2x + 4)}{(x + 3)(x - 2)}$
Step 411	2(-1) - 3 = -5	Step 4 $\frac{2^2 + 2(2) + 4}{2^2 + 2(2) + 4} = \frac{12}{2}$

Rationalise First To Get Rid Of The Roots

This method comes in handy when we deal with $\frac{1}{0}$ form when the numerator and denominator have radicals/square roots. Step 1: Multiply the numerator and denominator by the conjugate

Step 2: Expand the brackets (using $(a + b)(a - b) = a^2 - b^2$ form

Example 17	Example 18	Example 19
Find $\lim_{x \to -1} \frac{x+1}{\sqrt{x+5}-2}$	Find $\lim_{y\to 0} \frac{\sqrt{5+y}-\sqrt{5}}{y}$	Find $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$
First, we check substitution:	First, we check substitution:	First, we check substitution:
$\frac{-1+1}{\sqrt{-1+5}-2} = \frac{0}{0}$	$\frac{\sqrt{5+0} - \sqrt{5}}{0} = \frac{0}{0}$	$\frac{\sqrt{1+0} - \sqrt{1-0}}{0} = \frac{0}{0}$
This is $\frac{0}{0}$ and has radicals hence can rationalise	This is $\frac{0}{0}$ and has radicals hence can rationalise	This is $\frac{0}{0}$ and has radicals hence can rationalise
Step 1 $\frac{x+1}{\sqrt{x+5}-2} \times \frac{\sqrt{x+5}+2}{\sqrt{x+5}+2}$ Step 2	Step 1 $\frac{\sqrt{5+y} - \sqrt{5}}{y} \times \frac{\sqrt{5+y} + \sqrt{5}}{\sqrt{5+y} + \sqrt{5}}$ Step 2	Step 1 $\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \times \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$ Step 2
$\frac{(x+1)(\sqrt{x+5}+2)}{(\sqrt{x+5})^2 - 2^2}$	$\frac{\left(\sqrt{5+y}\right)^2 - \left(\sqrt{5}\right)^2}{y\left(\sqrt{5+y} + \sqrt{5}\right)}$	$\frac{\left(\sqrt{1+x}\right)^2 - \left(\sqrt{1-x}\right)^2}{x\left(\sqrt{1+x} + \sqrt{1-x}\right)}$ 2x
$= \frac{(x+1)(\sqrt{x+5}+2)}{x+1}$	$=\frac{y}{y(\sqrt{5+y}+\sqrt{5})}$	$=\frac{2x}{x(\sqrt{1+x}+\sqrt{1-x})}$
Step 3 $\sqrt{-1+5}+2=4$	Step 3 $\frac{1}{\sqrt{5+0} + \sqrt{5}} = \frac{1}{2\sqrt{5}}$	$\frac{2}{\sqrt{1+0} + \sqrt{1-0}} = 1$

Use L'Hôpital's Rule First

The rule itself can **only be applied for** $\frac{0}{0}$ and $\frac{\pm \infty}{\pm \infty}$ forms. The process is as follows:

Step 1: Ensure direct substitution into the limit gives one of the two forms: $\frac{0}{0}$ or $\frac{\pm \infty}{+\infty}$

Find $\lim_{x\to 0} \frac{\sin x}{x}$	Find $\lim_{x\to\infty} \frac{\ln x}{x}$	Find $\lim_{x\to\infty}\frac{e^x}{x^2}$
$\frac{\sin 0}{0} = \frac{0}{0}$	$\frac{\ln \infty}{\infty} = \frac{\infty}{\infty}$	$\frac{e^{\infty}}{\infty^2} = \frac{\infty}{\infty}$
This is $\frac{0}{0}$ hence we apply L'Hôpital's	This is $\frac{\infty}{\infty}$ hence we apply L'Hôpital's	This is $\frac{\infty}{\infty}$ hence we apply L'Hôpital's
Step 2	Step 2	Step 2 & 3
$\frac{d}{dx}(\sin x) = \cos x, \qquad \frac{d}{dx}(x) = 1$	$\frac{d}{dx}(\ln x) = \frac{1}{x}, \qquad \frac{d}{dx}(x) = 1$	$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x}$
Step 3	Step 3	Notice, directly substituting here gives $\frac{e^{\infty}}{2(\infty)} = \frac{\infty}{\infty}$
$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \cos(0) = 1$	$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{x}} = \frac{1}{\infty} = 0$	This is $\frac{\infty}{\infty}$ hence we apply L'Hôpital's AGAIN. Repeated L'Hôpital's makes it powerful in solving complex limits

	x-∞ x x-∞ 1 ω	2 i opitat o manoo it portonat in cotting comptox time
Hence, $\lim_{x\to 0} \frac{\sin x}{x} = 1$	Hence, $\lim_{x \to \infty} \frac{\ln x}{x} = 0$	$\lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2} = e^{\infty} = \infty$ Hence, limit DNE
hree Common Mistakes		
Mistake 1: Using L'Hopitals Without An Indeterminate form	Mistake 2: Using The quotient Rule	Mistake 3: Solving when limit DNE (see the one- sided limits section on the page below to be able to understand this)
Find $\lim_{x\to 0} \frac{\cos x}{x}$	Find $\lim_{x\to\infty} \frac{\ln x}{x}$	Find $\lim_{x\to 0} \frac{\sin x}{\sqrt{x}}$
Since this is indeterminate, we can rewrite the expression with t-Hôpital's giving us $\lim_{x\to 0} \frac{\cos x}{x} = \frac{-\sin x}{1}$ Here, direct substitution gives $\frac{-\sin 0}{1} = 0$	This is $\frac{\ln \infty}{\infty} = \frac{\infty}{\infty}$ This is $\frac{\infty}{\infty}$ hence we apply L'Hôpital's $\frac{d}{dx} \left(\frac{\ln x}{x} \right) \frac{1 - \ln x}{x^2}$ $\lim_{x \to \infty} \frac{x}{x} = \lim_{x \to \infty} \frac{1 - \ln x}{x^2}$ And so on	$\frac{\sin 0}{\sqrt{0}} = \frac{0}{0}$ Since this is $\frac{8}{0}$, we can apply L'Hôpital's $\lim_{x \to 0} \frac{\sin x}{\sqrt{x}} = \lim_{x \to 0} \frac{\cos x}{2\sqrt{x}} = \lim_{x \to 0} 2\sqrt{x} \cos x$ Here, direct substitution gives $2\sqrt{0} \cos 0 = 0$
Note that is not the correct form for applying L'Hôpital's. The expression must be $\frac{0}{n}$ or $\frac{\infty}{\infty}$ to apply this rule	Note that we differentiate the numerator and denominator SEPARATELY and then write it as a fraction. Do not apply the quotient rule onto the whole fraction.	The mistake is much harder to spot here. Recall that a limit only exists if both one-sided limits exis Here, $\lim_{x\to 0^+} \frac{\sin x}{\sqrt{x}}$ exists, however $\lim_{x\to 0^-} \frac{\sin x}{\sqrt{x}}$ doesn't because \sqrt{x} isn't defined for $x<0$.

Type 3: Finding Trigonometric Limits						
Immediate Substitution						
Example 23	Example 24	Example 25	Example 26			
Find $\lim_{x\to 1} \cos \frac{\pi x}{3}$	Find $\lim_{x\to 0} \frac{x^2-2}{\cos x}$	Find $\lim_{x \to \frac{\pi}{6}} \sin^3 x \sec^4 x$	Find $\lim_{x \to \pi} (3\sin x - 2x)$			
$\lim_{x \to \pi} (3\sin x - 2x)$	$\lim_{x\to\pi}(3\sin x-2x)$	$\lim_{x\to\pi}(3\sin x-2x)$	$\lim_{x \to \pi} (3\sin x - 2x)$			
This tells us to replace x with π in $(3 \sin x - 2x)$	This tells us to replace x with π in $(3 \sin x - 2x)$	This tells us to replace x with π in $(3 \sin x - 2x)$	This tells us to replace x with π in $(3 \sin x - 2x)$			
Substituting gives	Substituting gives	Substituting gives	Substituting gives			
$(3\sin\pi-2\pi)$	$(3\sin\pi-2\pi)$	$(3\sin\pi-2\pi)$	$(3\sin\pi-2\pi)$			
$=-2\pi$	$=-2\pi$	$=-2\pi$	$=-2\pi$			

Indeterminate Form – Do 'something' first

Use Trig Identities First

When limits have trigonometric functions, we often use or pick the one which takes you to the basic trig identities sin	ur trigonometric identities to simplify the question and progr or cos	ess forward. If you ever get confused which identity to use	
Here's a quick revision.			
Reciprocal Identities	$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$	$\sec \theta = \frac{1}{\cos \theta} \qquad \qquad \csc \theta = \frac{1}{\sin \theta}$	
Pythagorean Identities	$\sin^2\theta + \cos^2\theta = 1 \qquad 1 + \tan^2\theta$	$= \sec^2 \theta \qquad 1 + \cot^2 \theta = \csc^2 \theta$	
Addition and Subtraction Identities	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \qquad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$		
Double Angle Identities		$\theta - \sin^2 \theta$ $2\sin^2 \theta$ $\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$ $\sin^2 \theta - 1$	
Example 27	Example 28	Example 29	
Find $\lim_{x\to 0} \frac{\sin x}{\sin 2x}$	Find $\lim_{x \to -\frac{\pi}{4}} \frac{1+\sqrt{2}\sin x}{\cos 2x}$	Find $\lim_{x \to \frac{\pi}{2}} \frac{\cot^2 x}{1 - \sin x}$	
$\frac{\sin(0)}{\sin 2(0)} = \frac{0}{0}$ This is $\frac{0}{0}$ hence we could apply L'Hôpital's (this also gives us the same answer) but we can utilise a double angle	$\frac{1+\sqrt{2}\sin\left(-\frac{\pi}{4}\right)}{\cos\left(2\left(-\frac{\pi}{4}\right)\right)} = \frac{1+\sqrt{2}\left(-\frac{1}{\sqrt{2}}\right)}{\cos\left(-\frac{\pi}{2}\right)} = \frac{0}{0}$ This is $\frac{0}{0}$ hence we could apply L'Hôpital's (this also gives	$\frac{\cot^2\frac{\pi}{2}}{1-\sin\frac{\pi}{2}}=\frac{0}{0}$ This is $\frac{0}{0}$ hence we could apply L'Hôpital's (this also gives us the same answer) but we can utilise a reciprocal identity	

us the same answer) but we can utilise a double angle

where we use difference of squares identity

 $\lim_{x \to -\frac{\pi}{4}} \frac{1 + \sqrt{2}\sin x}{\cos 2x} = \lim_{x \to -\frac{\pi}{4}} \frac{1 + \sqrt{2}\sin x}{1 - 2\sin^2 x}$

 $\lim_{x \to -\frac{\pi}{4}} \frac{1}{(1+\sqrt{2}\sin x)(1-\sqrt{2}\sin x)}$

 $= \frac{1}{\left(1 - \sqrt{2}\sin\left(-\frac{\pi}{4}\right)\right)} = \frac{1}{2}$

 $\lim_{x \to \frac{\pi}{2}} \frac{\cot^2 x}{1 - \sin x} = \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{(\sin^2 x)(1 - \sin x)}$

Now, we see the denominator is fully in terms of $\sin x$,

 $\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{(\sin^2 x)(1 - \sin x)} = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin^2 x}{(\sin^2 x)(1 - \sin x)}$

 $\lim_{x \to \frac{\pi}{2}} \frac{(1 + \sin x)(1 - \sin x)}{(\sin^2 x)(1 - \sin x)}$

where we use difference of squares identity

		$=\frac{1+\sin 2}{\sin^2 \frac{\pi}{2}}=2$					
	Use L'Hôpital's Rule First						
Example 30 (L'Hopitals)	Example 31 (L'Hopitals)	Example 32 (L'Hopitals)					
Find $\lim_{x\to 0} \frac{\sin ax}{\sin bx}$	Find $\lim_{x \to \frac{1}{4}} \frac{1-\tan x}{1-\sqrt{2}\sin x}$	Find $\lim_{x \to \frac{1}{4}} \frac{1-\tan x}{\cos 2x}$					
Do not always look for identities just because there is a	This question feels intimidating at first, but keep in mind	Direct substitution gives us					
trigonometric function, also use the previously learned concepts. Here, direct substitution gives $\frac{\sin a(0)}{\sin b(0)} = \frac{0}{0}$	everything we know. Direct substitution gives us $\frac{1-\tan\frac{\pi}{4}}{1-\sqrt{2}\sin\frac{\pi}{4}}=\frac{1-1}{1-1}=\frac{0}{0}$	$\frac{1-\tan\frac{\pi}{4}}{\cos\left(2\left(\frac{\pi}{4}\right)\right)} = \frac{0}{0}$					
$\overline{\sin b(0)} = \overline{0}$ This indetermine form of $\frac{0}{0}$ means we can use the L'Hôpital's rule as follows	This indeterminate form of $\frac{0}{0}$ indicates using L'Hôpital's rule. $\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x} = \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{-\sqrt{2} \cos x}$	This indeterminate form of $\frac{0}{0}$ indicates using L'Hôpital's rule. But, let's try some trigonometric identities to test our skills: $1 - \tan x \qquad 1 - \frac{\sin x}{\cos x}$					
$\lim_{x \to 0} \frac{\sin ax}{\sin bx} = \lim_{x \to 0} \frac{a \cos ax}{b \cos bx} = \frac{a \cos 0}{b \cos 0} = \frac{\mathbf{a}}{\mathbf{b}}$	$=\lim_{x\to\frac{\pi}{4}}\frac{1}{\sqrt{2}\cos^3x}$	$\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{\cos 2x} = \lim_{x \to \frac{\pi}{4}} \frac{1 - \frac{\sin x}{\cos x}}{\cos^2 x - \sin^2 x}$ $= \lim_{x \to \frac{\pi}{4}} \frac{\cos x (\cos x + \sin x)(\cos x - \sin x)}{\cos x (\cos x + \sin x)(\cos x - \sin x)}$					
	Here, we can do direct substitution to get $\frac{1}{\sqrt{2}\cos^3\left(\frac{\pi}{4}\right)} = \frac{1}{\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)^3} = 2$	$= \frac{1}{\cos\frac{\pi}{4}\left(\cos\frac{\pi}{4} + \sin\frac{\pi}{4}\right)} = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)} = 1$					

Use Small Angle Approximations First (can only when tending to zero)

When a trigonometric limit has $x \to 0$, we can use a set of useful "approximations" for the trigonometric functions. These approximations can simplify the problems and speed up

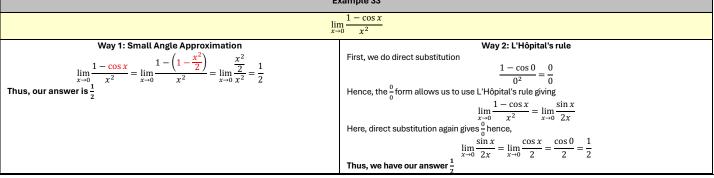
Let us look at a familiar question to test this approximation: While we would usually use L'Hôpital's rule here, let us try our approximation

y to replace the $\sin 2x$

 $\lim_{x \to 0} \frac{\sin x}{\sin 2x} = \lim_{x \to 0} \frac{\sin x}{2 \sin x \cos x} = \frac{1}{2 \cos 0} = \frac{1}{2}$

 $\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{x}{x} = \lim_{x \to 0} 1 = 1$

These questions, however, seem equally fast by the small angle approximation or by L'Hôpital's rule. Instead, let us see the following question where this approximation actually saves us Example 33



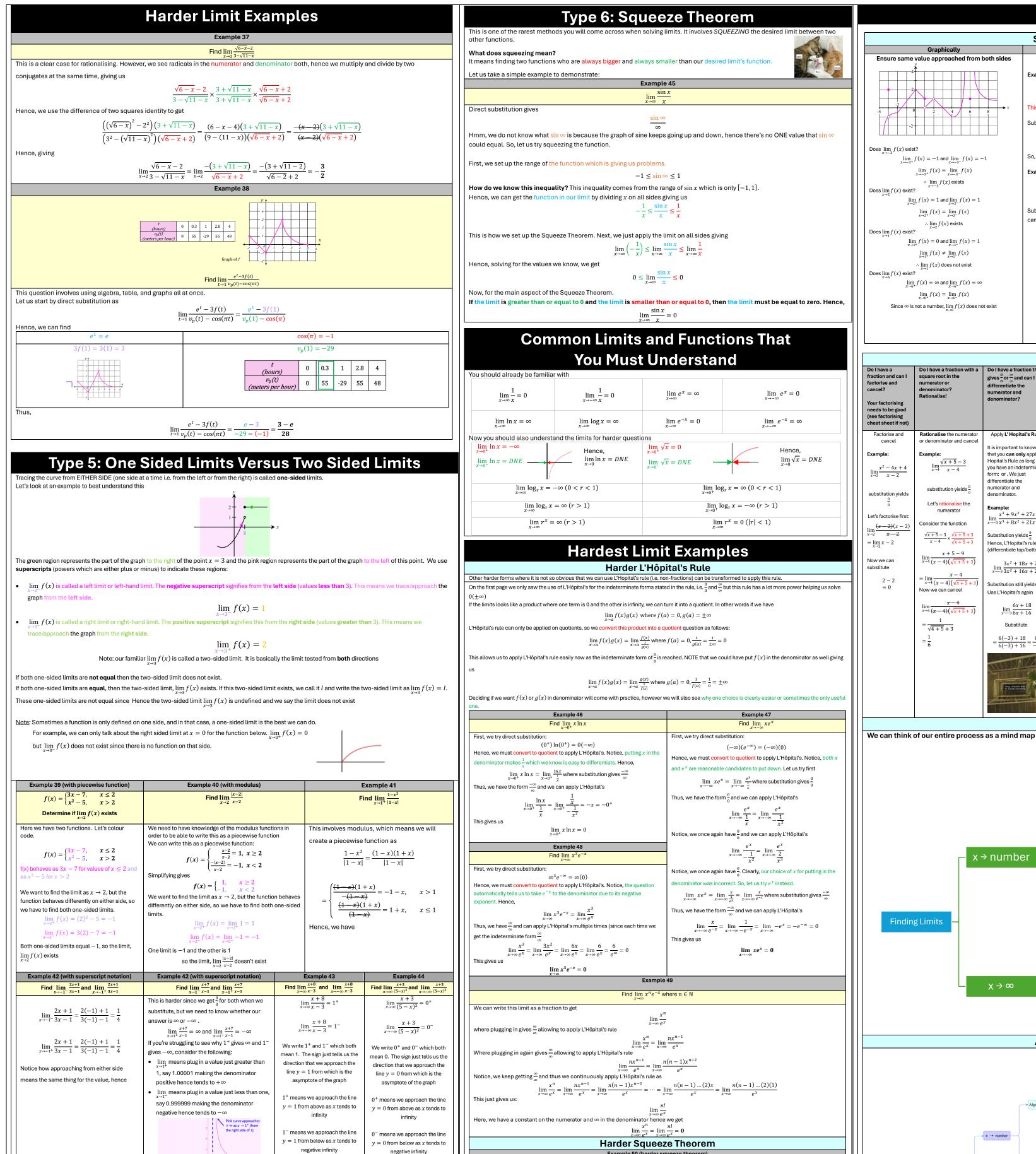
Type 4: Finding Infinite Limits With Rational Functions

$\lim_{x \to \infty} \frac{2x+3}{4x^2-5}$		
Bottom-heavy	Even powers	Top-heavy
(denominator has the highest power)	(a tie with highest power of	(numerator has the highest power)
	numerator & denominator)	
Example 34	Example 35	Example 36
$\lim_{x \to \infty} \frac{2x+3}{4x^2-5}$	$\lim_{x \to \infty} \frac{5x^2 + 5x - 5}{6x^2 - 2x + 5}$	$\lim_{x \to \infty} \frac{10x^2 + x}{4x - 1}$
$\lim_{x \to \infty} \frac{2x+3}{4x^2-5}$	$\lim_{x \to \infty} \frac{5x^2 + 5x - 5}{6x^2 - 2x + 5}$	$\lim_{x \to \infty} \frac{10x^2 + x}{4x - 1}$
Highest power in denominator is a 2 due to x^2 term, so let's divide all terms by this	Highest power in denominator is a 2 due to x^2 term, so let's divide all terms by this	Highest power in denominator is a 1 due to term, so let's divide all terms by this
$\lim_{x \to \infty} \frac{\frac{2x}{x^2} + \frac{3}{x^2}}{\frac{4x^2}{x^2} - \frac{5}{x^2}}$	$\lim_{x \to \infty} \frac{\frac{5x^2}{x^2} + \frac{5x}{x^2} - \frac{5}{x^2}}{\frac{6x^2}{x^2} - \frac{2x}{x^2} + \frac{5}{x^2}}$	$\lim_{x \to \infty} \frac{\frac{10x^2}{x} + \frac{x}{x}}{\frac{4x}{x} - \frac{1}{x}}$
$= \lim_{x \to \infty} \frac{\frac{2}{x} + \frac{3}{x^2}}{4 - \frac{5}{x^2}}$	$= \lim_{x \to \infty} \frac{5 + \frac{5}{x} - \frac{5}{x^2}}{6 - \frac{2}{x} + \frac{5}{x^2}}$	$=\lim_{x\to\infty}\frac{10x+1}{4-\frac{1}{x}}$
Substitute and get $\frac{0+0}{4-0} = \frac{0}{4} = 0$	Substitute and get $\frac{5+0-0}{6-0+0} = \frac{5}{6}$	Substitute and get $\frac{\infty}{4-0}=\infty$
Shortcut method: Here the highest power in the denominator is greater than that of the numerator hence bottom-heavy (the bottom becomes very large) and the limit is always going to equal 0	Shortcut method: Here the ratio of the highest power terms which are x terms is $\frac{5}{6}$. Hence limit $=\frac{5}{6}$	Shortcut method: Here the highest power in the numerator is greater than that of the denominator hence top-heavy and hence there is no limit (infinite)

Careful when you have a root in the denominator. If $x \to \infty$, divide inside the root by x^2 and outside by

$$\lim_{x \to \infty} \frac{2x}{\sqrt{4x^2 + 1}} = \lim_{x \to \infty} \frac{\frac{2x}{x}}{\frac{1}{x}\sqrt{4x^2 + 1}} = \lim_{x \to \infty} \frac{\frac{2x}{x}}{\sqrt{\frac{4x^2}{x^2} + \frac{1}{x^2}}} = \lim_{x \to \infty} \frac{2}{\sqrt{4 + \frac{1}{x^2}}}$$

Here, we substitute to get



Let's look at this graphically to

Let's look at this graphically to

understand:

Direct substitution gives

Hence, applying the limit gives

Thus, by the squeeze theorem, we have that

that x^3 must be negative as well. This is important because when r

Example 50 (harder squeeze theore

Find $\lim_{x\to 0^-} x^3 \cos \frac{2}{x}$

 $0^3 \cos \frac{2}{0}$

 $-1 \le \cos \frac{2}{x} \le 1$ Now, we multiply by x^3 . Here it is important to note one thing from the question. Our limit is tending to 0^- , which means x < 0 . Hence, we know

> $\lim_{x \to 0^{-}} (-x^{3}) \ge \lim_{x \to 0^{-}} x^{3} \cos \frac{2}{x} \ge \lim_{x \to 0^{-}} x^{3}$ $0 \ge \lim_{x \to 0^-} x^3 \cos \frac{2}{x} \ge 0$

> > $\lim_{x \to 0^-} x^3 \cos \frac{2}{x} = 0$

Now, we cannot find $\cos \frac{2}{0}$, hence we don't know what $\cos \frac{2}{0}$ evaluates to. We can utilise the squeeze theorem here as

Summaries Showing limit exists or DNE Determine $\lim_{x\to 2} f(x)$ if it exists This tells us to replace x with 3 in the expression 2x $f(x) = \begin{cases} 3x - 7, & x \le 2 \\ x^2 - 5, & x > 2 \end{cases}$ So, we get a number which means that the limit exists $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{2} - 5) = (2)^{2} - 5 = -1$

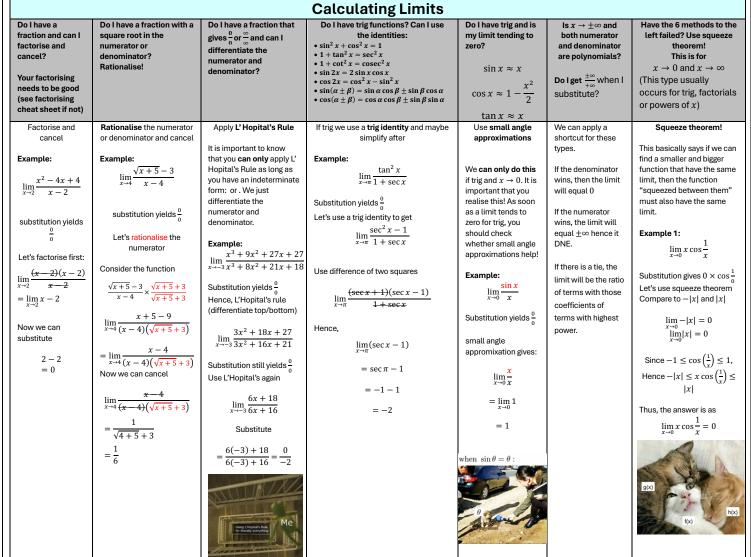
We can write this as a piecewise function:

 $f(x) = \begin{cases} 1, & x \ge 2 \\ -1, & x < 2 \end{cases}$

 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 1 = 1$

 $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} -1 = -1$

One limit is -1 and the other is 1 so the limit DNI



Mind Map

Substituting gives $\frac{2}{0}$ which is undefined because we

cannot divide by zero and therefore the limit DNE

