Correlation 2A

$1 r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{100}{\sqrt{92 \times 112}}=\frac{100}{101.50862}=0.985$ (3 s.f.)
$2 S_{x x}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}=33845-\frac{367 \times 367}{6}=33845-22448.166 \ldots=11396.833 \ldots$
$S_{y y}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}=12976-\frac{270 \times 270}{6}=12976-12150=826$
$S_{x y}=\sum x y-\frac{\sum x \sum y}{n}=17135-\frac{367 \times 270}{6}=17135-16515=620$
$r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{620}{\sqrt{11396.833 \times 826}}=\frac{620}{3068.189}=0.202$ (3 s.f.)
3 a $S_{a a}=\sum a^{2}-\frac{\left(\sum a\right)^{2}}{n}=1899-\frac{115 \times 115}{7}=9.7142 \ldots=9.71$ (3 s.f.)
b $r=\frac{S_{a h}}{\sqrt{S_{a a} S_{h h}}}=\frac{72.1}{\sqrt{9.7142 \ldots \times 571.4}}=0.96774 \ldots=0.968(3$ s.f. $)$
c There is positive correlation. The greater the age of the person, the taller the person.
4 a Calculating the summary statistics gives:

$$
\begin{aligned}
& \sum l=26.8 \quad \sum l^{2}=150.02 \quad \sum t=47.4 \quad \sum t^{2}=399.58 \quad \sum l t=237.07 \\
& S_{l l}=150.02-\frac{26.8 \times 26.8}{6}=150.02-119.7066 \ldots=30.3133 \ldots=30.3(3 \text { s.f. }) \\
& S_{t t}=399.58-\frac{47.4 \times 47.4}{6}=399.58-374.46=25.12 \\
& S_{l t}=237.06-\frac{26.8 \times 47.4}{6}=237.07-211.72=25.35
\end{aligned}
$$

b $r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{25.35}{\sqrt{30.3133 \ldots \times 25.12}}=\frac{25.35}{27.5947 \ldots}=0.91865 \ldots=0.919$ (3 s.f.)
c The data in the scatter graph appear to be linear, and the correlation coefficient found in part \mathbf{b} is close to 1 . Therefore, a linear regression model is suitable to model the data.

5 a $S_{x x}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}=120123-\frac{973 \times 973}{8}=120123-118341.125=1781.875$

$$
\begin{aligned}
& S_{y y}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}=33000-\frac{490 \times 490}{8}=33000-30012.5=2987.5 \\
& S_{x y}=\sum x y-\frac{\sum x \sum y}{n}=61595-\frac{973 \times 490}{8}=61595-59596.25=1998.75 \\
& r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{1998.75}{\sqrt{1781.875 \times 2987.5}}=\frac{1998.75}{2307.2389}=0.86629 \ldots=0.866 \quad(3 \text { s.f. })
\end{aligned}
$$

b The correlation is positive. The higher the IQ , the higher the mark gained in the general knowledge test. (Alternatively, the higher the mark gained in the intelligence test, the higher the IQ.)

6 The coding is linear, so the product moment correlation coefficient will be unaffected by the coding. So the product moment correlation coefficient between x and y is 0.973 .

7 a This is the coded data set:

\boldsymbol{p}	0	5	3	2	1
\boldsymbol{q}	0	17	12	10	6

b Calculating summary statistics for the coded data gives:

$$
\begin{aligned}
& \sum p=11 \quad \sum p^{2}=39 \quad \sum q=45 \quad \sum q^{2}=569 \quad \sum p q=147 \\
& S_{p p}=\sum p^{2}-\frac{\left(\sum p\right)^{2}}{n}=39-\frac{11 \times 11}{5}=14.8 \\
& S_{q q}=\sum q^{2}-\frac{\left(\sum q\right)^{2}}{n}=569-\frac{45 \times 45}{5}=164 \\
& S_{p q}=\sum p q-\frac{\sum p \sum q}{n}=147-\frac{11 \times 45}{5}=48 \\
& r=\frac{S_{p q}}{\sqrt{S_{p p} S_{q q}}}=\frac{48}{\sqrt{14.8 \times 164}}=0.97429 \ldots=0.974(3 \text { s.f. })
\end{aligned}
$$

c The coding is linear. The product moment correlation coefficient is independent of the linear coding, hence it is 0.974 (3 s.f.).

8 a This is the coded data set:

\boldsymbol{p}	10	8	11	9	12
\boldsymbol{t}	4	3	5	4	6

Calculating summary statistics for the coded data gives:
$\sum p=50 \quad \sum p^{2}=510 \quad \sum t=22 \quad \sum t^{2}=102 \quad \sum p t=227$
$S_{p p}=\sum p^{2}-\frac{\left(\sum p\right)^{2}}{n}=510-\frac{50 \times 50}{5}=10$
$S_{t t}=\sum t^{2}-\frac{\left(\sum t\right)^{2}}{n}=102-\frac{22 \times 22}{5}=5.2$
$S_{p t}=\sum p t-\frac{\sum p \sum t}{n}=227-\frac{50 \times 22}{5}=7$
b $\quad r=\frac{S_{p t}}{\sqrt{S_{p p} S_{t t}}}=\frac{7}{\sqrt{10 \times 5.2}}=\frac{7}{7.2111 \ldots}=0.97072 \ldots=0.971(3 \mathrm{~s} . \mathrm{f}$.
c The coding is linear. The product moment correlation coefficient is independent of the linear coding, hence it is 0.971 (3 s.f.).

9 a This is the coded data set:

\boldsymbol{x}	15	37	5	0	45	27	20
\boldsymbol{y}	30	13	34	43	20	14	0

Calculating summary statistics for the coded data gives:
$\sum x=149 \quad \sum x^{2}=4773 \quad \sum y=154 \quad \sum y^{2}=4670 \quad \sum x y=2379$
$S_{x x}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}=4773-\frac{149 \times 149}{7}=1601.4285 \ldots=1601$ (4 s.f.)
$S_{y y}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}=4670-\frac{154 \times 154}{7}=1282$
$S_{x y}=\sum x y-\frac{\sum x \sum y}{n}=2379-\frac{149 \times 154}{7}=-899$
b $r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{-899}{\sqrt{1601.4285 \times 1282}}=\frac{-899}{1432.84 \ldots}=-0.62742 \ldots=-0.627$ (3 s.f.)
c The shopkeeper is not correct. There is negative correlation, so as the newspaper sales go up the sweet sales go down.

10a $\quad S_{f f}=\sum f^{2}-\frac{\left(\sum f\right)^{2}}{n}==\sum(10 x)^{2}-\frac{\left(\sum 10 x\right)^{2}}{8}=10^{2}\left(\sum x^{2}-\frac{\left(\sum x\right)^{2}}{8}\right)$

$$
=100 S_{x x}=100 \times 111.48=11148
$$

b $S_{g g}=\sum g^{2}-\frac{\left(\sum g\right)^{2}}{n}=74458.75-\frac{\left(\sum 5(y+10)\right)^{2}}{n}=74458.75-\frac{\left(5 \sum y+50 \times n\right)^{2}}{n}$

$$
=74458.75-\frac{(5 \times 70.9+50 \times 8)^{2}}{8}=3299.97
$$

$$
r=\frac{S_{f g}}{\sqrt{S_{f f} S_{g g}}}=\frac{5667.5}{\sqrt{11148 \times 3299.97}}=0.934 \text { (3 s.f.) }
$$

c The product moment correlation coefficient shows strong linear correlation. However, the scatter diagram suggests a non-linear fit.
$11 \mathrm{a} S_{x x}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}=22.02-\frac{12^{2}}{7}=1.44857 \ldots$

$$
\begin{aligned}
& S_{y y}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}=1491.69-\frac{97.7^{2}}{7}=128.077 \ldots \\
& S_{x y}=\sum x y-\frac{\sum x \sum y}{n}=180.37-\frac{12 \times 97.7}{7}=12.8842 \ldots \\
& r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{12.884 \ldots}{\sqrt{1.4485 \ldots \times 128.077 \ldots}}=0.946(3 \mathrm{s.f})
\end{aligned}
$$

b This table sets out the residuals for each data point:

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{y}=-\mathbf{1 . 2 9 0 5}+\mathbf{8 . 8 9 4 5} \boldsymbol{x}$	$\boldsymbol{\varepsilon}$
1.1	6.2	8.49345	-2.29345
1.3	10.5	10.27235	0.22765
1.4	12	11.1618	0.8382
1.7	15	13.83015	1.16985
1.9	17	15.60905	1.39095
2.1	18	17.38795	0.61205
2.5	19	20.94575	-1.94575

c The linear model might not be a good model for this data, as the residuals do not appear to be randomly scattered about zero.

