Review Exercise 1

1 a $8^{\frac{1}{3}}$
Use $a^{\frac{1}{m}}=\sqrt[m]{a}$, so $a^{\frac{1}{3}}=\sqrt[3]{a}$
$=\sqrt[3]{8}$
$=2$
b $8^{-\frac{2}{3}}=\frac{1}{8^{\frac{2}{3}}}\left(\right.$ Use $\left.a^{-m}=\frac{1}{a^{m}}\right)$
First find $8^{\frac{2}{3}} a^{\frac{n}{m}}=\sqrt[m]{\left(a^{n}\right)}$ or $(\sqrt[m]{a})^{n}$
$8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}$
$8^{\frac{2}{3}}=2^{2}=4$
$8^{-\frac{2}{3}}=\frac{1}{8^{\frac{2}{3}}}$

$$
=\frac{1}{4}
$$

2 a $125^{\frac{4}{3}}$
$a^{\frac{n}{m}}=\sqrt[m]{\left(a^{n}\right)}$ or $(\sqrt[m]{a})^{n}$
$=(\sqrt[3]{125})^{4}$
$=5^{4}$
$=625$
b $24 x^{2} \div 18 x^{\frac{4}{3}}$
(Use $a^{m} \div a^{n}=a^{m-n}$)
$=\frac{24 x^{2}}{18 x^{\frac{4}{3}}}=\frac{4 x^{2}}{3 x^{\frac{4}{3}}} \quad$ cancelling by 6
$=\frac{4 x^{\frac{2}{3}}}{3}$ because $2-\frac{4}{3}=\frac{2}{3}$

3 a $\sqrt{80}$

$$
\text { Use } \begin{aligned}
\sqrt{(b c)} & =\sqrt{b} \sqrt{c} \\
& =\sqrt{16} \times \sqrt{5} \\
& =4 \sqrt{5}(a=4)
\end{aligned}
$$

b $(4-\sqrt{5})^{2}=(4-\sqrt{5})(4-\sqrt{5})$
$=4(4-\sqrt{5})-\sqrt{5}(4-\sqrt{5})$
$=16-4 \sqrt{5}-4 \sqrt{5}+5$

$$
=21-8 \sqrt{5}
$$

$(b=21$ and $c=-8)$

4 a $(4+\sqrt{3})(4-\sqrt{3})$
$=4(4-\sqrt{3})+\sqrt{3}(4-\sqrt{3})$
$=16-4 \sqrt{3}+4 \sqrt{3}-3$
$=13$

$$
\text { b } \begin{aligned}
\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}} & =\frac{26(4-\sqrt{3})}{(4+\sqrt{3})(4-\sqrt{3})} \\
& =\frac{26(4-\sqrt{3})}{13} \\
& =2(4-\sqrt{3}) \\
& =8-2 \sqrt{3}
\end{aligned}
$$

$$
(a=8 \text { and } b=-2)
$$

5 a mean $=\frac{1-\sqrt{k}+2+5 \sqrt{k}+2 \sqrt{k}}{3}$
$=\frac{3+6 \sqrt{k}}{3}$
$=1+2 \sqrt{k}$

5 b range $=2+5 \sqrt{k}-(1-\sqrt{k})$

$$
=1+6 \sqrt{k}
$$

6 a $y^{-1}=\left(\frac{1}{25} x^{4}\right)^{-1}$

$$
\begin{aligned}
& =\frac{1}{\frac{1}{25} x^{4}} \\
& =\frac{25}{x^{4}} \\
& =25 x^{-4}
\end{aligned}
$$

b $5 y^{\frac{1}{2}}=5\left(\frac{1}{25} x^{4}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& =5\left(\frac{1}{5} x^{2}\right) \\
& =x^{2}
\end{aligned}
$$

$7 \quad$ Area $=\frac{1}{2} h(a+b)$

$$
\begin{aligned}
& =\frac{1}{2}(2 \sqrt{2})(3+\sqrt{2}+5+3 \sqrt{2}) \\
& =\sqrt{2}(8+4 \sqrt{2}) \\
& =8 \sqrt{2}+8
\end{aligned}
$$

The area of the trapezium is $8+8 \sqrt{2} \mathrm{~cm}^{2}$.
$8 \quad \frac{p+q}{p-q}=\frac{(3-2 \sqrt{2})+(2-\sqrt{2})}{(3-2 \sqrt{2})-(2-\sqrt{2})}$

$$
\begin{aligned}
& =\frac{5-3 \sqrt{2}}{1-\sqrt{2}} \\
& =\frac{(5-3 \sqrt{2})}{(1-\sqrt{2})} \times \frac{(1+\sqrt{2})}{(1+\sqrt{2})} \\
& =\frac{5+5 \sqrt{2}-3 \sqrt{2}-6}{1+\sqrt{2}-\sqrt{2}-2} \\
& =\frac{-1+2 \sqrt{2}}{-1} \\
& =1-2 \sqrt{2}(m=1, n=-2)
\end{aligned}
$$

9 a $x^{2}-10 x+16=(x-8)(x-2)$
b Let $x=8^{y}$
$8^{2 y}-10\left(8^{y}\right)+16=\left(8^{y}-8\right)\left(8^{y}-2\right)=0$
So $8^{y}=8$ or $8^{y}=2$
$y=1$ or $y=\frac{1}{3}$

10 a $x^{2}-8 x=(x-4)^{2}-16$
Complete the square for $x^{2}-8 x-29$

$$
\begin{aligned}
x^{2}-8 x-29 & =(x-4)^{2}-16-29 \\
& =(x-4)^{2}-45
\end{aligned}
$$

$(a=-4$ and $b=-45)$
b $\quad x^{2}-8 x-29=0$
$(x-4)^{2}-45=0$
Use the result from part a:

$$
(x-4)^{2}=45
$$

Take the square root of both sides:

$$
\begin{gathered}
x-4= \pm \sqrt{45} \\
x=4 \pm \sqrt{45} \\
\sqrt{45}=\sqrt{9} \times \sqrt{5}=3 \sqrt{5} \\
\text { since } \sqrt{(a b)}=\sqrt{a} \sqrt{b}
\end{gathered}
$$

Roots are $4 \pm 3 \sqrt{5}$
($c=4$ and $d= \pm 3$)
$11 \mathrm{f}(a)=a(a-2)$ and $\mathrm{g}(a)=a+5$
$a(a-2)=a+5$
$a^{2}-2 a-a-5=0$
$a^{2}-3 a-5=0$
Using the quadratic formula:
$a=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-5)}}{2(1)}$
$=\frac{3 \pm \sqrt{29}}{2}$

$$
=4.19 \text { or }-1.19
$$

As $a>0, a=4.19$ (3 s.f.)

12 a The height of the athlete's shoulder above the ground is 1.7 m
b $1.7+10 t-5 t^{2}=0$
Using the quadratic formula when
$a=-5, b=10$ and $c=1.7$

$$
\begin{aligned}
t & =\frac{-10 \pm \sqrt{(10)^{2}-4(-5)(1.7)}}{2(-5)} \\
& =\frac{-10 \pm \sqrt{134}}{-10} \\
& =-0.16 \text { or } 2.16
\end{aligned}
$$

As $t>0, t=2.16 \mathrm{~s}$ (3 s.f.)
c $1.7+10 t-5 t^{2}=1.7-5\left(t^{2}-2 t\right)$

$$
\begin{aligned}
& =1.7-5\left((t-1)^{2}-1\right) \\
& =1.7-5(t-1)^{2}+5 \\
& =6.7-5(t-1)^{2}
\end{aligned}
$$

$A=6.7, B=5$ and $C=1$
d Maximum when $(t-1)=0, t=1 \mathrm{~s}$ and maximum height $=6.7 \mathrm{~m}$

13 a $\mathrm{f}(x)=x^{2}-6 x+18$
$x^{2}-6 x=(x-3)^{2}-9$
Complete the square for $x^{2}-6 x+18$
$x^{2}-6 x+18=(x-3)^{2}-9+18$

$$
=(x-3)^{2}+9
$$

$a=3$ and $b=9$
b $y=x^{2}-6 x+18$
$y=(x-3)^{2}+9$
$(x-3)^{2} \geq 0$
Squaring a number cannot give a negative result.
The minimum value of $(x-3)^{2}$ is 0 , when $x=3$.
So the minimum value of y is $0+9=0$, when $x=3$.
Q is the point $(3,9)$.
The curve crosses the y-axis where $x=0$.

13 b For $x=0, y=18$
P is the point $(0,18)$.
The graph of $y=x^{2}-6 x+18$ is a V shape.
For $y=a x^{2}+b x+c$, if $a>0$, the shape is V.

Use the information about P and Q to sketch the curve $x \geq 0$, so the part where $x<0$ is not needed.
c $y=(x-3)^{2}+9$
Put $y=41$ into the equation of C.
$41=(x-3)^{2}+9$
Subtract 9 from both sides.
$32=(x-3)^{2}$
$(x-3)^{2}=32$
Take the square root of both sides.
$x-3= \pm \sqrt{32}$
$x=3 \pm \sqrt{32}$
$\sqrt{32}=\sqrt{16} \times \sqrt{2}=4 \sqrt{2}$

$$
\begin{aligned}
& \text { using } \sqrt{(a b)}=\sqrt{a} \sqrt{b} \\
& x=3 \pm 4 \sqrt{2}
\end{aligned}
$$

x-coordinate of R is $3+4 \sqrt{2}$
The other value is $3-4 \sqrt{2}$ which is less than 0 , so is not needed.

14 a Using the discriminant
$b^{2}-4 a c=0$ for equal roots
$(2 \sqrt{2})^{2}-4(1)(k)=0$
$8-4 k=0$
$k=2$

14b $y=x^{2}+2 \sqrt{2} x+2$
$=(x+\sqrt{2})^{2}$
When $y=0,(x+\sqrt{2})^{2}=0$
$x=-\sqrt{2}$
When $x=0, y=2$

15a $g(x)=x^{9}-7 x^{6}-8 x^{3}$

$$
=x^{3}\left(x^{6}-7 x^{3}-8\right)
$$

To factorise $x^{6}-7 x^{3}-8$, let $y=x^{3}$
$y^{2}-7 y-8=(y+1)(y-8)$
So $g(x)=x^{3}\left(x^{3}+1\right)\left(x^{3}-8\right)$
$a=1, b=-8$
b $\mathrm{g}(x)=x^{3}\left(x^{3}+1\right)\left(x^{3}-8\right)=0$
$x^{3}=0, x^{3}=-1$ or $x^{3}=8$
$x=-1, x=0$ or $x=2$

16 a $x^{2}+10 x+36$
$x^{2}+10 x=(x+5)^{2}-25$
Complete the square for $x^{2}+10 x+36$
$x^{2}+10 x+36=(x-5)^{2}-25+36$

$$
=(x+5)^{2}+11
$$

$a=5$ and $b=11$
b $x^{2}+10 x+36=0$
$(x+5)^{2}+11=0$
'Hence' implied in part a must be used $(x+5)^{2}=-11$
A real number squared cannot be negative. There are no real roots.
c $x^{2}+10 x+k=0$
$a=1, b=10, c=k$

16 c For equal roots, $b^{2}=4 a c$

$$
\begin{aligned}
10^{2} & =4 \times 1 \times k \\
4 k & =100 \\
k & =25
\end{aligned}
$$

d The graph of $x^{2}+10 x+25$ is a V shape.
For $y=a x^{2}+b x+c$, if $a>0$, the shape
is V.
$x=0: y=0+0+25=25$
Meets y-axis at (0,25).

$$
y=0: x^{2}+10 x+25=0
$$

$$
(x+5)(x+5)=0
$$

$$
x=-5
$$

Meets x-axis at $(-5,0)$.

The graph meets the x-axis at just one point, so it 'touches' the x-axis.

17 a $x^{2}+2 x+3$
$x^{2}+2 x=(x+1)^{2}-1$
Complete the square for $x^{2}+2 x+3$
$x^{2}+2 x+3=(x+1)^{2}-1+3$

$$
=(x+1)^{2}+2
$$

$a=1$ and $b=2$
b The graph of $y=x^{2}+2 x+3$ is a V shape.
For $y=a x^{2}+b x+c$, if $a>0$, the shape is V.
$x=0: y=0+0+3$
Put $x=0$ to find the intersection with the y-axis:
Meets y-axis at (0,3).

17 b Put $y=0$ to find the intersection with the x-axis:

$$
\begin{aligned}
y=0: x^{2}+2 x+3 & =0 \\
(x+1)^{2}+2 & =0 \\
(x+1)^{2} & =-2
\end{aligned}
$$

A real number squared cannot be negative, therefore, no real roots, so not intersection with the x-axis.

c $x^{2}+2 x+3$
$a=1, b=2, c=3$
$b^{2}-4 a c=2^{2}-4 \times 1 \times 3$

$$
=-8
$$

Since the discriminant is negative, the equation has no real roots, so the graph does not cross the x-axis.
d $x^{2}+k x+3=0$
$a=1, b=k, c=3$
For no real roots, $b^{2}<4 a c$

$$
\begin{gathered}
k^{2}<12 \\
k^{2}-12<0 \\
(k+\sqrt{12})(k-\sqrt{12})<0
\end{gathered}
$$

This is a quadratic inequality with critical values $-\sqrt{12}$ and $\sqrt{12}$.

Critical values:

$$
\begin{aligned}
& k=-\sqrt{12}, k=\sqrt{12} \\
& -\sqrt{12}<k<\sqrt{12}
\end{aligned}
$$

17 d The surds can be simplified using $\sqrt{(a b)}=\sqrt{a} \sqrt{b}$ $\sqrt{12}=\sqrt{4} \times \sqrt{3}=2 \sqrt{3}$ $(-2 \sqrt{3}<k<2 \sqrt{3})$

18a $2 x^{2}-x(x-4)=8$

$$
\begin{array}{r}
2 x^{2}-x^{2}+4 x=8 \\
x^{2}+4 x-8=0
\end{array}
$$

b $\quad x^{2}+4 x-8=0$

$$
\begin{aligned}
x^{2}+4 x & =(x+2)^{2}-4 \\
(x+2)^{2}-4-8 & =0 \\
(x+2)^{2} & =12 \\
x+2 & = \pm \sqrt{12} \\
x & =-2 \pm \sqrt{12} \\
\sqrt{12} & =\sqrt{4} \times \sqrt{3}=2 \sqrt{3} \\
x & =-2 \pm 2 \sqrt{3} \\
a=-2 \text { and } b & =2
\end{aligned}
$$

$$
\text { Using } y=x-4 \text { : }
$$

$$
y=(-2 \pm 2 \sqrt{3})-4
$$

$$
=-6 \pm 2 \sqrt{3}
$$

Solution: $x=-2 \pm 2 \sqrt{3}$

$$
y=-6 \pm 2 \sqrt{3}
$$

19a $3(2 x+1)>5-2 x$
$6 x+3>5-2 x$
$6 x+2 x+3>5$
$8 x>2$
$x>\frac{1}{4}$
b $2 x^{2}-7 x+3=0$
$(2 x-1)(x-3)=0$
$(2 x-1)=0$
$(x-3)=0$
$x=\frac{1}{2}$ or $x=3$

19 b

$2 x^{2}-7 x+3>0$ where
$x<\frac{1}{2}$ or $x>3$

C

$$
\frac{1}{4}<x<\frac{1}{2} \text { or } x>3
$$

20

$$
\begin{array}{r}
-2(x+1)=x^{2}-5 x+2 \\
-2 x-2=x^{2}-5 x+2
\end{array}
$$

$$
x^{2}-3 x+4=0
$$

Using the discriminant
$b^{2}-4 a c=(-3)^{2}-4(1)(4)=-7$
As $b^{2}-4 a c<0$, there are no real roots.
Hence there is no value of x for which $\mathrm{p}(x)=\mathrm{q}(x)$.

21 a $y=5-2 x$

$$
2 x^{2}-3 x-(5-2 x)=16
$$

$$
2 x^{2}-3 x-5+2 x=16
$$

$$
2 x^{2}-x-21=0
$$

$$
(2 x-7)(x+3)=0
$$

$$
x=3 \frac{1}{2}, \quad x=-3
$$

$$
x=3 \frac{1}{2}: y=5-7=-2
$$

$$
x=-3: y=5+6=11
$$

Solution $x=3 \frac{1}{2}, y=-2$
and $x=-3, y=11$
$21 \mathbf{b}$ The equation in part a could be written as $y=5-2 x$ and $y=2 x^{2}-3 x-16$.
Therefore, the solution to $2 x^{2}-3 x-16=5-2 x$ are the same as for part a.
These are the critical values for

$$
2 x^{2}-3 x-16>5-2 x
$$

$$
x=3 \frac{1}{2} \text { and } x=-3
$$

$2 x^{2}-3 x-16>5-2 x$
$\left(2 x^{2}-3 x-16-5+2 x>0\right)$
$2 x^{2}-x-21>0$

$x<-3$ or $x>3 \frac{1}{2}$
22 a $\quad x^{2}+k x+(k+3)=0$
$a=1, b=k, c=k+3$
$b^{2}>4 a c$
$k^{2}>4(k+3)$
$k^{2}>4 k+12$
$k^{2}-4 k-12>0$
b $k^{2}-4 k-12=0$
$(k+2)(k-6)=0$
$k=-2, k=6$

$k^{2}-4 k-12>0$ where $k<-2$ or $k>6$
$23 \frac{6}{x+5}<2$
Multiply both sides by $(x+5)^{2}$
$6(x+5)<2(x+5)^{2}$
$6 x+30<2 x^{2}+20 x+50$
$2 x^{2}+14 x+20>0$
Solve the quadratic to find the critical values.
$2 x^{2}+14 x+20=0$
$2\left(x^{2}+7 x+10\right)=0$
$2(x+5)(x+2)=0$
$x=-5$ or $x=-2$

The solution is $x<-5$ or $x>-2$.
24a $9-x^{2}=0$
$(3+x)(3-x)=0$
$x=-3$ or $x=3$
When $x=0, y=9$
To work out the points of intersection, solve the equations simultaneously.
$9-x^{2}=14-6 x$
$x^{2}-6 x+5=0$
$(x-5)(x-1)=0$
$x=1$ or $x=5$

When $x=1, y=8$
When $x=5, y=-16$
Let $14-6 x=0$
$x=\frac{14}{6}=\frac{7}{3}$
The line crosses the x-axis at $\left(\frac{7}{3}, 0\right)$.

24 a

b

25a $\quad x^{3}-4 x=x\left(x^{2}-4\right)$

$$
=x(x+2)(x-2)
$$

b Curve crosses the x-axis where $y=0$

$$
x(x+2)(x-2)=0
$$

$x=0, x=-2, x=2$
When $x=0, y=0$
When $x \rightarrow \infty, y \rightarrow \infty$
When $x \rightarrow-\infty, y \rightarrow-\infty$

Crosses the y-axis at $(0,0)$.
Crosses the x-axis at $(-2,0),(2,0)$.
c $y=x^{3}-4 x$
$y=(x-1)^{3}-4(x-1)$
This is a translation of +1 in the x-direction.

25 c

Crosses the x-axis at $(-1,0),(1,0)$ and $(3,0)$.

26 a

Crosses the x-axis at $(2,0),(4,0)$.
Image of P is (3, 2).
26 b

Crosses the x-axis at $(1,0),(2,0)$. Image of P is $\left(1 \frac{1}{2},-2\right)$.

27 a

Meets the y-axis at $(0,0)$.
Meets the x-axis at $(0,0),(3,0)$.

27 b

Meets the y-axis at $(0,6)$.
Meets the x-axis at $(1,0),(4,0)$.
c

Meets the y-axis at $(0,3)$.
Meets the x-axis at $(2,0),(8,0)$.
28 a

$y=3$ is an asymptote.
$x=0$ is an asymptote.
b The graph does not cross the y-axis (see sketch in part a).
Crosses the x-axis where $y=0$:

$$
\begin{aligned}
\frac{1}{x}+3 & =0 \\
\frac{1}{x} & =-3 \\
x & =-\frac{1}{3},\left(-\frac{1}{3}, 0\right)
\end{aligned}
$$

29 a $\left(x^{2}-5 x+2\right)\left(x^{2}-5 x+4\right)=0$
For $x^{2}-5 x+2=0$

Using the quadratic formula:
$x=\frac{5 \pm \sqrt{(-5)^{2}-4(1)(2)}}{2(1)}$.
$=\frac{5 \pm \sqrt{17}}{2}$
$x=4.56$ or $x=0.438$
For $x^{2}-5 x+4=0$
$(x-1)(x-4)=0$
$x=1$ or $x=4$
$x=0.438,1,4$ or 4.56
b When $x=0, y=8$

30 a $y=-\mathrm{f}(x)$ is a reflection in the x-axis of $y=\mathrm{f}(x)$, so P is transformed to $(6,8)$.
b $y=\mathrm{f}(x-3)$ is a translation 3 units to the right of $y=\mathrm{f}(x)$, so P is transformed to $(9,-8)$.
c $2 y=\mathrm{f}(x)$ is $y=\frac{1}{2} \mathrm{f}(x)$ which is a vertical stretch scale factor $\frac{1}{2}$ of $y=\mathrm{f}(x)$, so P is transformed to $(6,-4)$.

31 a $y=-\frac{a}{x}$ is the curve $y=\frac{k}{x}, k<0$ $y=(x-b)^{2}$ is a translation, b units to the right of the curve $y=x^{2}$
When $x=0, y=b^{2}$
When $y=0, x=b$

31 a

b The graphs intersect at 1 point, so have 1 point of intersection.

32 a $y=\frac{1}{x^{2}}-4$ is a translation $\binom{0}{-4}$ of
$y=\frac{1}{x^{2}}$

b When $y=\frac{1}{(x+k)^{2}}-4$ passes through the origin, $x=0$ and $\mathrm{y}=0$.

$$
\text { So } \frac{1}{k^{2}}-4=0
$$

$$
\frac{1}{k^{2}}=4
$$

$$
k= \pm \frac{1}{2}
$$

Challenge

1 a $x^{2}-10 x+9=0$
$(x-1)(x-9)=0$
$x=1$ or $x=9$
b $3^{x-2}\left(3^{x}-10\right)=-1$
$3^{2 x-2}-10 \times 3^{x-2}+1=0$
Multiply by 3^{2}
$3^{2 x}-10 \times 3^{x}+9=0$
Let $y=3^{x}$
$y^{2}-10 y+9=0$
Using your answers from part a
$y=1$ or 9
$3^{x}=1$ or $3^{x}=9$
$x=0$ or 2
2 Let x and y be the length and width of the rectangle.
Area $=x y=6$
Perimeter $=2 x+2 y=8 \sqrt{2}$
$2 y=8 \sqrt{2}-2 x$
$y=4 \sqrt{2}-x$
Solving simultaneously
$x(4 \sqrt{2}-x)=6$
$x^{2}-4 \sqrt{2} x+6=0$
Using the quadratic formula
$x=\frac{4 \sqrt{2} \pm \sqrt{(4 \sqrt{2})^{2}-4(1)(6)}}{2(1)}$
$=\frac{4 \sqrt{2} \pm \sqrt{8}}{2}$
$=\frac{4 \sqrt{2} \pm 2 \sqrt{2}}{2}$
$x=\sqrt{2}$ or $x=3 \sqrt{2}$
When $x=\sqrt{2}, y=3 \sqrt{2}$
When $x=3 \sqrt{2}, y=\sqrt{2}$
The dimensions of the rectangle are $\sqrt{2} \mathrm{~cm}$ and $3 \sqrt{2} \mathrm{~cm}$.

3 Solving simultaneously
$3 x^{3}+x^{2}-x=2 x(x-1)(x+1)$
$3 x^{3}+x^{2}-x=2 x\left(x^{2}-1\right)$
$3 x^{3}+x^{2}-x=2 x^{3}-2 x$
$x^{3}+x^{2}+x=0$
$x\left(x^{2}+x+1\right)=0$
The discriminant of $x^{2}+x+1$
$b^{2}-4 a c=1^{2}-4(1)(1)=-3$
$-3<0$ so there are no real solutions for $x^{2}+x+1$

The only solution is when $x=0$ at $(0,0)$.
$4 \quad \mathrm{f}(x)=\left(x^{2}+x-20\right)\left(x^{2}+x-2\right)$

$$
=(x+5)(x-4)(x+2)(x-1)
$$

when $\mathrm{f}(x)=0$
$x=-5,-2,1$ or 4
$\mathrm{g}(x-k)=(x-k+5)(x-k-4)$ $(x-k+2)(x-k-1)$
When $k=3$,
$g(x-3)=(x+2)(x-7)(x-1)(x-4)$
$(x+2),(x-1)$ and $(x-4)$ match
When $k=-3, \mathrm{~g}(x+3)$

$$
=(x+8)(x-1)(x+5)(x+2)
$$

$(x-1),(x+5)$ and $(x+2)$ match
So $k=-3$ or 3 .

