Trigonometric ratios 9G

1 a i The maximum value of $\cos x^{\circ}$ is 1 . This occurs when $x=0$.
ii Minimum value is -1 , which occurs when $x=180$.
b i Maximum value of $\sin x^{\circ}$ is 1 , so maximum value of $4 \sin x^{\circ}$ is 4 . This occurs when $x=90$.
ii Minimum value of $4 \sin x^{\circ}$ is $=-4$. This occurs when $x=270$.
c The graph, $\cos (-x)^{\circ}$ is a reflection of the graph of $\cos x^{\circ}$ in the y-axis. This is the same curve; $\cos (-x)^{\circ}=\cos x^{\circ}$.
i Maximum value of $\cos (-x)^{\circ}$ is 1 . This occurs when $x=0$.
ii Minimum value of $\cos (-x)^{\circ}$ is -1 . This occurs when $x=180$.
d The graph of $3+\sin x^{\circ}$ is the graph of $\sin x^{\circ}$ translated by +3 vertically.
i Maximum is 4 when $x=90$.
ii Minimum is 2 when $x=270$.
e The graph of $-\sin x^{\circ}$ is the reflection of the graph of $\sin x^{\circ}$ in the x-axis.
i Maximum is 1 when $x=270$.
ii Minimum is -1 when $x=90$.
f The graph of $\sin 3 x^{\circ}$ is the graph of $\sin x^{\circ}$ stretched by $\frac{1}{3}$ in the x direction.
i Maximum is 1 when $x=30$.
ii Minimum is -1 when $x=90$.
2

3 a The graph of $y=-\cos \theta$ is the graph of $y=\cos \theta$ reflected in the θ-axis.

The graph:
meets the θ-axis at $\left(90^{\circ}, 0\right),\left(270^{\circ}, 0\right)$
meets the y-axis at $\left(0^{\circ},-1\right)$
has a maximum at $\left(180^{\circ}, 1\right)$
has minima at $\left(0^{\circ},-1\right)$ and $\left(360^{\circ},-1\right)$.
b The graph of $y=\frac{1}{3} \sin \theta$ is the graph of $y=\sin \theta$ stretched by scale factor $\frac{1}{3}$ in the y direction.

The graph:
meets θ-axis at $\left(0^{\circ}, 0\right),\left(180^{\circ}, 0\right),\left(360^{\circ}, 0\right)$
meets y-axis at $\left(0^{\circ}, 0\right)$
has a maximum at $\left(90^{\circ}, \frac{1}{3}\right)$
has a minimum at $\left(270^{\circ},-\frac{1}{3}\right)$.
c The graph of $y=\sin \frac{1}{3} \theta$ is the graph of $y=\sin \theta$ stretched by scale factor 3 in θ direction.

The graph:
only meets the axes at the origin, has a maximum at $\left(270^{\circ}, 1\right)$.

3 d The graph of $y=\tan \left(\theta-45^{\circ}\right)$ is the graph of $\tan \theta$ translated by 45° to the right.

The graph:
meets the θ-axis at $\left(45^{\circ}, 0\right),\left(225^{\circ}, 0\right)$, meets the y-axis at $\left(0^{\circ},-1\right)$,
has asymptotes at $\theta=135^{\circ}$ and $\theta=315^{\circ}$.
4 a This is the graph of $y=\sin \theta^{\circ}$ stretched by scale factor -2 in the y-direction (i.e. reflected in the θ-axis and scaled by 2 in the y-direction).

The graph:
meets the θ-axis at $\left(-180^{\circ}, 0\right),\left(0^{\circ}, 0\right)$, $\left(180^{\circ}, 0\right)$,
has a maximum at $\left(-90^{\circ}, 2\right)$,
has a minimum at $\left(90^{\circ},-2\right)$.
b This is the graph of $y=\tan \theta^{\circ}$ translated by 180° to the left.

As $\tan \theta^{\circ}$ has a period of 180°, $\tan (\theta+180)^{\circ}=\tan \theta$

4 b The graph meets the θ-axis at $\left(-180^{\circ}, 0\right)$, $\left(0^{\circ}, 0\right),\left(180^{\circ}, 0\right)$
c This is the graph of $y=\cos \theta^{\circ}$ stretched by scale factor $\frac{1}{4}$ horizontally.

The graph:
meets the θ-axis at $\left(-157 \frac{1}{2}^{\circ}, 0\right)$,
$\left(-112 \frac{1}{2}^{\circ}, 0\right),\left(-67 \frac{1}{2}^{\circ}, 0\right),\left(-22 \frac{1}{2}^{\circ}, 0\right)$,
$\left(22 \frac{1}{2}^{\circ}, 0\right),\left(67 \frac{1}{2}^{\circ}, 0\right),\left(112 \frac{1}{2}^{\circ}, 0\right)$, $\left(157 \frac{1}{2}^{\circ}, 0\right)$
meets the y-axis at $\left(0^{\circ}, 1\right)$
has maxima at $\left(-180^{\circ}, 1\right),\left(-90^{\circ}, 1\right)$,
$\left(0^{\circ}, 1\right),\left(90^{\circ}, 1\right),\left(180^{\circ}, 1\right)$
has minima at $\left(-135^{\circ},-1\right),\left(-45^{\circ},-1\right),\left(45^{\circ}\right.$, $-1),\left(135^{\circ},-1\right)$.
d This is the graph of $y=\sin \theta^{\circ}$ reflected in the y-axis.
(This is the same as $y=-\sin \theta^{\circ}$.)

The graph:
meets the θ-axis at $\left(-180^{\circ}, 0\right),\left(0^{\circ}, 0\right)$, $\left(180^{\circ}, 0\right)$
has a maximum at $\left(-90^{\circ}, 1\right)$
has a minimum at $\left(90^{\circ},-1\right)$.

5 a Period $=720^{\circ}$

5 b $\operatorname{Period}=360^{\circ}$

c Period $=180^{\circ}$

d Period $=90^{\circ}$

6 a i $y=\cos (-\theta)$ is a reflection of
$y=\cos \theta$ in the y-axis, which is the same curve, so $\cos \theta=\cos (-\theta)$.

ii $y=\sin (-\theta)$ is a reflection of $y=\sin \theta$ in the y-axis.

6 a ii $y=-\sin (-\theta)$ is a reflection of $y=\sin (-\theta)$ in the θ-axis, which is the graph of $y=\sin \theta$, so $-\sin (-\theta)=\sin \theta$.

iii $y=\sin \left(\theta-90^{\circ}\right)$ is the graph of $y=\sin \theta$ translated by 90° to the right, which is the graph of $y=-\cos \theta$.
So $\sin \left(\theta-90^{\circ}\right)=-\cos \theta$.

b Using a ii

$$
\begin{aligned}
\sin \left(90^{\circ}-\theta\right) & =-\sin \left(-\left(90^{\circ}-\theta\right)\right) \\
& =-\sin \left(\theta-90^{\circ}\right)
\end{aligned}
$$

Using a iii
$-\sin \left(\theta-90^{\circ}\right)=-(-\cos \theta)$

$$
=\cos \theta
$$

Sosin $\left(90^{\circ}-\theta\right)=\cos \theta$.
c Usingai

$$
\begin{aligned}
\cos \left(90^{\circ}-\theta\right) & =\cos \left(\theta-90^{\circ}\right) \\
& =\sin \theta
\end{aligned}
$$

So $\cos \left(90^{\circ}-\theta\right)=\sin \theta$.

7 a The curve crosses the x-axis at $-270^{\circ}-30^{\circ},-90^{\circ}-30^{\circ}, 90^{\circ}-30^{\circ}$ and $270^{\circ}-30^{\circ} ; \theta=-300^{\circ},-120^{\circ}, 60^{\circ}$ and 240°.
Coordinates are $\left(-300^{\circ}, 0\right),\left(-120^{\circ}, 0\right)$, $\left(60^{\circ}, 0\right)$ and $\left(240^{\circ}, 0\right)$
b $\cos 30^{\circ}=\frac{\sqrt{3}}{2} ;\left(0, \frac{\sqrt{3}}{2}\right)$

8 a The graph is a translation left 60° of the sine graph.
Therefore, $y=\sin \left(x+60^{\circ}\right)$
$k=60^{\circ}$
b Yes, the graph could be a translation right 300°, so $y=\sin \left(x-300^{\circ}\right)$

9 a

9 b

Between 1 p.m. and 5 p.m.

