Trigonometric ratios 9G

- **1 a i** The maximum value of $\cos x^{\circ}$ is 1. This occurs when x = 0.
 - ii Minimum value is -1, which occurs when x = 180.
 - **b** i Maximum value of $\sin x^{\circ}$ is 1, so maximum value of $4 \sin x^{\circ}$ is 4. This occurs when x = 90.
 - ii Minimum value of $4 \sin x^{\circ}$ is = -4. This occurs when x = 270.
 - **c** The graph, $\cos (-x)^{\circ}$ is a reflection of the graph of $\cos x^{\circ}$ in the *y*-axis. This is the same curve; $\cos (-x)^{\circ} = \cos x^{\circ}$.
 - i Maximum value of $\cos (-x)^\circ$ is 1. This occurs when x = 0.
 - ii Minimum value of $\cos (-x)^\circ$ is -1. This occurs when x = 180.
 - **d** The graph of $3 + \sin x^{\circ}$ is the graph of $\sin x^{\circ}$ translated by +3 vertically.
 - i Maximum is 4 when x = 90.
 - ii Minimum is 2 when x = 270.
 - **e** The graph of $-\sin x^\circ$ is the reflection of the graph of $\sin x^\circ$ in the *x*-axis.
 - i Maximum is 1 when x = 270.
 - ii Minimum is -1 when x = 90.
 - **f** The graph of $\sin 3x^{\circ}$ is the graph of $\sin x^{\circ}$ stretched by $\frac{1}{3}$ in the *x* direction.
 - i Maximum is 1 when x = 30. ii Minimum is -1 when x = 90.

2

3 a The graph of $y = -\cos \theta$ is the graph of $y = \cos \theta$ reflected in the θ -axis.

The graph: meets the θ -axis at (90°, 0), (270°, 0) meets the y-axis at (0°, -1) has a maximum at (180°, 1) has minima at (0°, -1) and (360°, -1).

b The graph of $y = \frac{1}{3}\sin\theta$ is the graph of $y = \sin\theta$ stretched by scale factor $\frac{1}{3}$ in the *y* direction.

$$\begin{array}{c} y \\ \frac{1}{3} \\ 0 \\ -\frac{1}{3} \\ 0 \\ 0 \\ -\frac{1}{3} \end{array} \qquad y = \frac{1}{3} \sin \theta \\ y = \frac{1}{3} \sin \theta \\ 270^{\circ} \\ 360^{\circ} \\ \theta \end{array}$$

The graph: meets θ -axis at (0°, 0), (180°, 0), (360°, 0) meets y-axis at (0°, 0) has a maximum at (90°, $\frac{1}{3}$) has a minimum at (270°, $-\frac{1}{3}$).

c The graph of $y = \sin \frac{1}{3}\theta$ is the graph of $y = \sin \theta$ stretched by scale factor 3 in θ direction.

The graph: only meets the axes at the origin, has a maximum at $(270^\circ, 1)$. **3 d** The graph of $y = \tan(\theta - 45^\circ)$ is the graph of $\tan \theta$ translated by 45° to the right.

The graph: meets the θ -axis at (45°, 0), (225°, 0), meets the y-axis at (0°, -1), has asymptotes at θ = 135° and θ = 315°.

4 a This is the graph of $y = \sin \theta^{\circ}$ stretched by scale factor -2 in the y-direction (i.e. reflected in the θ -axis and scaled by 2 in the y-direction).

The graph: meets the θ -axis at (-180°, 0), (0°, 0), (180°, 0), has a maximum at (-90°, 2), has a minimum at (90°, -2).

b This is the graph of $y = \tan \theta^{\circ}$ translated by 180° to the left.

As $\tan \theta^{\circ}$ has a period of 180° , $\tan (\theta + 180)^{\circ} = \tan \theta$

- 4 b The graph meets the θ-axis at (-180°, 0), (0°, 0), (180°, 0)
 - **c** This is the graph of $y = \cos \theta^{\circ}$ stretched by scale factor $\frac{1}{4}$ horizontally.

The graph: meets the θ -axis at $\left(-157\frac{1}{2}^{\circ}, 0\right)$, $\left(-112\frac{1}{2}^{\circ}, 0\right)$, $\left(-67\frac{1}{2}^{\circ}, 0\right)$, $\left(-22\frac{1}{2}^{\circ}, 0\right)$, $\left(22\frac{1}{2}^{\circ}, 0\right)$, $\left(67\frac{1}{2}^{\circ}, 0\right)$, $\left(112\frac{1}{2}^{\circ}, 0\right)$, $\left(157\frac{1}{2}^{\circ}, 0\right)$ meets the *y*-axis at $\left(0^{\circ}, 1\right)$ has maxima at $\left(-180^{\circ}, 1\right)$, $\left(-90^{\circ}, 1\right)$

has maxima at (-180°, 1), (-90°, 1), (0°, 1), (90°, 1), (180°, 1) has minima at (-135°, -1), (-45°, -1), (45°, -1), (135°, -1).

d This is the graph of $y = \sin \theta^{\circ}$ reflected in the y-axis.

(This is the same as $y = -\sin \theta^{\circ}$.)

The graph: meets the θ -axis at (-180°, 0), (0°, 0), (180°, 0) has a maximum at (-90°, 1) has a minimum at (90°, -1).

5 a Period = 720°

Pure Mathematics Year 1/AS

SolutionBank

5 b Period = 360°

c Period = 180°

d Period = 90°

- **6** a i $y = \cos(-\theta)$ is a reflection of
 - $y = \cos \theta$ in the y-axis, which is the same curve, so $\cos \theta = \cos(-\theta)$.

ii $y = \sin(-\theta)$ is a reflection of $y = \sin \theta$ in the y-axis.

6 **a** ii $y = -\sin(-\theta)$ is a reflection of $y = \sin(-\theta)$ in the θ -axis, which is the graph of $y = \sin \theta$, so $-\sin(-\theta) = \sin \theta$.

iii $y = \sin(\theta - 90^\circ)$ is the graph of $y = \sin \theta$ translated by 90° to the right, which is the graph of $y = -\cos \theta$. So $\sin(\theta - 90^\circ) = -\cos \theta$.

- **b** Using **a** ii $sin(90^{\circ}-\theta) = -sin(-(90^{\circ}-\theta))$ $= -sin(\theta-90^{\circ})$ Using **a** iii $-sin(\theta-90^{\circ}) = -(-\cos\theta)$ $= \cos\theta$ So sin(90^{\circ}-\theta) = cos \theta.
- c Using a i $\cos(90^\circ - \theta) = \cos(\theta - 90^\circ)$ $= \sin \theta$ $\operatorname{So}\cos(90^\circ - \theta) = \sin \theta$.
- 7 a The curve crosses the *x*-axis at $-270^{\circ} - 30^{\circ}, -90^{\circ} - 30^{\circ}, 90^{\circ} - 30^{\circ}$ and $270^{\circ} - 30^{\circ}; \theta = -300^{\circ}, -120^{\circ}, 60^{\circ}$ and $240^{\circ}.$ Coordinates are (-300°, 0), (-120°, 0), (60°, 0) and (240°, 0)

b
$$\cos 30^\circ = \frac{\sqrt{3}}{2}; \left(0, \frac{\sqrt{3}}{2}\right)$$

Pure Mathematics Year 1/AS

- 8 a The graph is a translation left 60° of the sine graph. Therefore, $y = \sin (x + 60^{\circ})$ $k = 60^{\circ}$
 - **b** Yes, the graph could be a translation right 300° , so $y = \sin (x 300^\circ)$

