Constant acceleration 9A

1 a A displacement = 40 km, time = 0.5 h and $\frac{40}{0.5}$ = 80

So the average velocity is 80 km h⁻¹.

B displacement = 20 km, time = 0.5 h and $\frac{20}{0.5}$ = 40

So the average velocity is 40 km h^{-1} .

C displacement = 0 km, time = 0.5 h and $\frac{0}{0.5}$ = 0

So the average velocity is 0 km h^{-1} .

D displacement = 40 km, time = 1 h and $\frac{40}{1}$ = 40

So the average velocity is 40 km h⁻¹.

E displacement = -100 km, time = 1.5 h and $\frac{100}{1.5}$ = -66.7 (to 3 s.f.)

So the average velocity is -66.7 km h^{-1} .

- **b** The average velocity for the whole journey is 0 km h^{-1} as the overall displacement is 0 km.
- **c** Total distance travelled = 200 km

Total time taken = 4 h

average speed =
$$\frac{200}{4}$$
 = 50 km h⁻¹

2 a For first section of the journey: average velocity = 60 km h^{-1} , time taken = 2.5 h

displacement = $2.5 \times 60 = 150 \text{ km}$

This is 6 squares on the vertical axis, so one square is $\frac{150}{6} = 25 \text{ km}$

total displacement shows as 7.5 squares = $7.5 \times 25 = 187.5$ km

b Time for whole journey = 3.75 h

average velocity =
$$\frac{187.5}{3.75}$$
 = 50 km h⁻¹

3 a displacement = 12 km, time = 1 h

average velocity =
$$\frac{12}{1}$$
 = 12 km h⁻¹

- **b** Sarah passed her home at 12:45.
- c For the penultimate stage: displacement = -12 + (-3) = -15 km, time = 1.5 h average velocity = $\frac{-15}{1.5}$ = -10 km h⁻¹

For the final stage: displacement = 3 km, time = 1 h

average velocity =
$$\frac{3}{1}$$
 = 3 km h⁻¹

3 d Total distance travelled = 30 km Total time taken = 4 h

average speed =
$$\frac{30}{4}$$
 = 7.5 km h⁻¹

4 a Reading from the graph:

maximum height = 2.5 m time taken to reach this = 0.75 s

- **b** When it reaches the highest point, the velocity of the ball is 0 m s^{-1} .
- **c** i The velocity of the ball is positive (upwards) and decreases (the ball is decelerating) until it reaches 0 at the highest point.
 - **ii** The velocity of the ball is negative (downwards), and increases (the ball is accelerating) until it hits the ground at the same speed at which it was launched.