Review exercise 1

1 a Produce a table for the values of $\log s$ and $\log t$:

$\log \boldsymbol{s}$	0.3010	0.6532	0.7924	0.8633	0.9590
$\log \boldsymbol{t}$	-0.4815	0.0607	0.2455	0.3324	0.4698

which produces $r=0.9992$
b Since r is very close to 1 , this indicates that $\log s$ by $\log t$ is very close to being linear, which means that s and t are related by an equation of the form $t=a s^{n}$ (beginning of Section 1.1).
c Rearranging the equation:
$\log t=-0.9051+\log s^{1.4437}$
$\Rightarrow t=10^{-0.9051+\log s^{1.447}}=10^{-0.9051} \times 10^{\log ^{1.4437}}$
$\Rightarrow t=10^{-0.9051} \times s^{1.4437}$
and so $a=10^{-0.9051}=0.1244$ (4 s.f.) and $n=1.4437$
2 a Rearranging the equation:
$y=-0.2139+0.0172 x$
$\Rightarrow \log t=-0.2139+0.0172 P$
$\Rightarrow t=10^{-0.2139+0.0172 P}=10^{-0.2139} \times 10^{0.0172 P}$
$\Rightarrow t=10^{-0.2139} \times\left(10^{0.0172}\right)^{P}$
Therefore $a=10^{-0.2139}=0.611$ (3 s.f.) and $b=10^{0.0172}=1.04$ (3 s.f.).
b Not in the range of data (extrapolation).
3 a $r=\frac{59.524}{\sqrt{152.444 \times 26.589}}$
$=0.93494$ (the formulae for this is under S1 in the formula book).
b Make sure your hypotheses are clearly written using the parameter ρ :
$\mathrm{H}_{0}: \rho=0, \quad \mathrm{H}_{1}: \rho>0$
Test statistic: $\mathrm{r}=0.935$
Critical value at $1 \%=0.7155$
(Look up the value under 0.01 in the table for product moment coefficient; quote the figure in full.)
$0.935>0.7155$
Draw a conclusion in the context of the question:
So reject H_{0} : levels of serum and disease are positively correlated.
$4 r=-0.4063$, critical value for $n=6$ is -0.6084 , so no evidence.

5 a $H_{0}: \rho=0$
$H_{1}: \rho<0$
From the data, $r=-0.9313$. Since the critical value for $n=5$ is -0.8783 , there is sufficient evidence to reject H_{0}, i.e. at the 2.5% level of significance, there is sufficient evidence to say that there is negative correlation between the number of miles done by a one-year-old car and its value.
b If a 1% level of significance was used, then the critical value for $n=5$ is -0.9343 and so there would not be sufficient evidence to reject H_{0}.

6 a $\mathrm{P}($ tourism $)=\frac{50}{148}$

$$
\begin{aligned}
& =\frac{25}{74} \\
& =0.338 \text { (3 s.f.) }
\end{aligned}
$$

b The words 'given that' in the question tell you to use conditional probability:

$$
\begin{aligned}
\mathrm{P}(\text { no glasses } \mid \text { tourism }) & =\frac{\mathrm{P}\left(G^{\prime} \cap T\right)}{\mathrm{P}(T)} \\
& =\frac{\frac{23}{148}}{\frac{50}{148}} \\
& =\frac{23}{50} \\
& =0.46
\end{aligned}
$$

c It often helps to write down which combinations you want:

$$
\begin{aligned}
\mathrm{P}(\text { right-handed }) & =\mathrm{P}(E \cap R H)+\mathrm{P}(T \cap R H)+\mathrm{P}(C \cap R H) \\
& =\frac{30}{148} \times 0.8+\frac{50}{148} \times 0.7+\frac{68}{148} \times 0.75 \\
& =\frac{55}{74} \\
& =0.743(3 \text { s.f. })
\end{aligned}
$$

d The words 'given that' in the question tell you to use conditional probability:

$$
\begin{aligned}
\mathrm{P}(\text { engineering } \mid \text { right-handed }) & =\frac{\mathrm{P}(E \cap R H)}{\mathrm{P}(R H)} \\
& =\frac{\frac{30}{148} \times 0.8}{\frac{55}{74}} \\
& =\frac{12}{55} \\
& =0.218(3 \text { s.f. })
\end{aligned}
$$

7 a Start in the middle of the Venn diagram and work outwards. Remember the rectangle and those not in any of the circles. Your numbers should total 100.

b $\mathrm{P}\left(G, L^{\prime}, D^{\prime}\right)=\frac{10}{100}$

$$
=\frac{1}{10}=0.1
$$

c $\mathrm{P}\left(G^{\prime}, L^{\prime}, D^{\prime}\right)=\frac{41}{100}=0.41$
d $\mathrm{P}($ only two attributes $)=\frac{9+7+5}{100}$

$$
=\frac{21}{100}=0.21
$$

e The word 'given' in the question tells you to use conditional probability:

$$
\begin{aligned}
\mathrm{P}(G \mid L \cap D) & =\frac{\mathrm{P}(G \mid L \cap D)}{\mathrm{P}(\mathrm{~L} \mid D)} \\
& =\frac{\frac{10}{100}}{\frac{15}{100}} \\
& =\frac{10}{15} \\
& =\frac{2}{3}=0.667(3 \text { s.f. })
\end{aligned}
$$

8 a $\mathrm{P}(B \cup T)=\mathrm{P}(B)+\mathrm{P}(T)-\mathrm{P}(B \cap T)$ $0.6=0.25+0.45-\mathrm{P}(B \cap T)$
$\mathrm{P}(B \cap T)=0.1$
b When drawing the Venn diagram remember to draw a rectangle around the circles and add the probability 0.4.
Remember the total in circle $B=0.25$ and the total in circle $T=0.45$.

8 c The words 'given that' in the question tell you to use conditional probability:

$$
\begin{aligned}
\mathrm{P}\left(B \cap T^{\prime} \mid B \cup T\right) & =\frac{0.15}{0.6} \\
& =\frac{1}{4} \\
& =0.25
\end{aligned}
$$

9 a

b i There are two different situations where the second counter drawn is blue. These are BB and RB. Therefore the probability is: $\left(\frac{3}{8} \times \frac{2}{7}\right)+\left(\frac{5}{8} \times \frac{3}{7}\right)=\frac{6+15}{56}=\frac{21}{56}=\frac{3}{8}=0.375$.
ii $\mathrm{P}($ both blue $\mid 2$ nd blue $)=\frac{\mathrm{P}(\text { both blue and 2nd blue })}{\mathrm{P}(2 \text { nd blue })}=\frac{\mathrm{P}(\text { both blue })}{\mathrm{P}(2 \text { nd blue })}=\frac{\left(\frac{3}{8} \times \frac{2}{7}\right)}{\left(\frac{3}{8}\right)}=\frac{2}{7}$
10 a The first two probabilities allow two spaces in the Venn diagram to be filled in.
$\mathrm{P}(A \cup B)=\mathrm{P}\left(A \cap B^{\prime}\right)+\mathrm{P}\left(A^{\prime} \cap B\right)+\mathrm{P}(A \cap B)$, and this can be rearranged to see that $P(A \cap B)=0.15$
Finally, $\mathrm{P}(A \cup B)=0.62 \Rightarrow \mathrm{P}\left((A \cup B)^{\prime}\right)=0.38$. The completed Venn diagram is therefore:

b $\mathrm{P}(A)=0.34+0.15=0.49$ and $\mathrm{P}(B)=0.13+0.15=0.28$
c $\quad \mathrm{P}\left(A \mid B^{\prime}\right)=\frac{\mathrm{P}\left(A \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}=\frac{0.34}{1-\mathrm{P}(B)}=\frac{0.34}{0.72}=0.472$ (3 d.p.).
d If A and B are independent, then $\mathrm{P}(A)=\mathrm{P}(A \mid B)=\mathrm{P}\left(A \mid B^{\prime}\right)$. From parts \mathbf{b} and \mathbf{c}, this is not the case. Therefore they are not independent.

11 a $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B) \Rightarrow \mathrm{P}(A)=\mathrm{P}(A \cap B) \div \mathrm{P}(B)=0.15 \div 0.3=0.5$

11 b $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)=0.5+0.3-0.15=0.65 \Rightarrow \mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=1-0.65=0.35$
c Since B and C are mutually exclusive, they do not intersect.
The intersection of A and C should be 0.1 but $\mathrm{P}(A)=0.5$, allowing $\mathrm{P}\left(A \cap B^{\prime} \cap C^{\prime}\right)$ to be calculated. The filled-in probabilities sum to 0.95 , and so $\mathrm{P}\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)=0.05$.
Therefore, the filled-in Venn diagram should look like:

d i $\mathrm{P}(A \mid C)=\frac{\mathrm{P}(A \cap C)}{\mathrm{P}(C)}=\frac{0.1}{0.4}=0.25$
ii The set $A \cap\left(B \cup C^{\prime}\right)$ must be contained within A. First find the set $B \cup C^{\prime}$: this is made up from four distinct regions on the above Venn diagram, with labels $0.15,0.15,0.25$ and 0.05 . Restricting to those regions that are also contained within A leaves those labelled 0.15 and 0.25 . Therefore, $\mathrm{P}\left(A \cap\left(B \cup C^{\prime}\right)\right)=0.15+0.25=0.4$
iii From part ii, $\mathrm{P}\left(B \cup C^{\prime}\right)=0.15+0.15+0.25+0.05=0.6$. Therefore

$$
\mathrm{P}\left(A \mid\left(B \cup C^{\prime}\right)\right)=\frac{\mathrm{P}\left(A \cap\left(B \cup C^{\prime}\right)\right)}{\mathrm{P}\left(B \cup C^{\prime}\right)}=\frac{0.4}{0.6}=\frac{2}{3}
$$

12 a There are two different events going on: 'Joanna oversleeps' (O) and 'Joanna is late for college' (L). From the context, we cannot assume that these are independent events.
Drawing a Venn diagram, none of the regions can immediately be filled in. We are told that $\mathrm{P}(O)=0.15$ and so $\mathrm{P}(J$ does not oversleep $)=\mathrm{P}\left(O^{\prime}\right)=0.85$. The other two statements can be interpreted as $\frac{\mathrm{P}(L \cap O)}{\mathrm{P}(O)}=0.75$ and $\frac{\mathrm{P}\left(L \cap O^{\prime}\right)}{\mathrm{P}\left(O^{\prime}\right)}=0.1$
Filling in the first one:
$\frac{\mathrm{P}(L \cap O)}{\mathrm{P}(O)}=0.75 \Rightarrow \frac{\mathrm{P}(L \cap O)}{0.15}=0.75 \Rightarrow \mathrm{P}(L \cap O)=0.1125$
Also, $\frac{\mathrm{P}\left(L \cap O^{\prime}\right)}{0.85}=0.1 \Rightarrow \mathrm{P}\left(L \cap O^{\prime}\right)=0.085$
Therefore, $\mathrm{P}(L)=\mathrm{P}(L \cap O)+\mathrm{P}\left(L \cap O^{\prime}\right)=0.1125+0.085=0.1975$
b $\mathrm{P}(L \mid O)=\frac{\mathrm{P}(L \cap O)}{\mathrm{P}(O)}=\frac{0.1125}{0.1975}=\frac{45}{79}=0.5696$ (4 s.f.).

13a Drawing a diagram will help you to work out the correct area:

Using $z=\frac{x-\mu}{\sigma}$. As 91 is to the left of 100 , your z value should be negative.

$$
\begin{aligned}
\mathrm{P}(X<91) & =\mathrm{P}\left(Z<\frac{91-100}{15}\right) \\
& =\mathrm{P}(Z<-0.6) \\
& =1-0.7257 \\
& =0.2743
\end{aligned}
$$

(The tables give $\mathrm{P}(Z<0.6)=\mathrm{P}(Z>-0.6)$, so you want $1-$ this probability.)
b

As 0.2090 is not in the table of percentage points you must work out the larger area:
$1-0.2090=0.7910$
Use the first table or calculator to find the z value. It is positive as $100+k$ is to the right of 100 .
$\mathrm{P}(X>100+k)=0.2090$ or $\mathrm{P}(X<100+k)=0.791$

$$
\begin{aligned}
\frac{100+k-100}{15} & =0.81 \\
k & =12
\end{aligned}
$$

14 a Let H be the random variable \sim height of athletes, so $H \sim \mathrm{~N}\left(180,5.2^{2}\right)$
Drawing a diagram will help you to work out the correct area:

Using $z=\frac{x-\mu}{\sigma}$. As 188 is to the right of 180 your z value should be positive. The tables give $\mathrm{P}(Z<1.54)$ so you want 1 - this probability:

$$
\begin{aligned}
\mathrm{P}(H>188) & =\mathrm{P}\left(Z>\frac{188-100}{5.2}\right) \\
& =\mathrm{P}(Z>1.54) \\
& =1-0.9382 \\
& =0.0618
\end{aligned}
$$

b Let W be the random variable \sim weight of athletes, so $W \sim \mathrm{~N}\left(85,7.1^{2}\right)$

Using $z=\frac{x-\mu}{\sigma}$. As 97 is to the right of 85 , your z value should be positive.

$$
\begin{aligned}
\mathrm{P}(W<97) & =\mathrm{P}\left(Z<\frac{97-85}{7.1}\right) \\
& =\mathrm{P}(Z<1.69) \\
& =0.9545
\end{aligned}
$$

c $\mathrm{P}(W>97)=1-\mathrm{P}(W<97)$, so

$$
\begin{aligned}
\mathrm{P}(H>188 \& W>97) & =0.618(1-0.9545) \\
& =0.00281
\end{aligned}
$$

d Use the context of the question when you are commenting:
The evidence suggests that height and weight are positively correlated/linked, so assumption of independence is not sensible.

15 a Use the table of percentage points or calculator to find z. You must use at least the four decimal places given in the table.

$$
\begin{aligned}
\mathrm{P}(Z>a) & =0.2 \\
a & =0.8416 \\
\mathrm{P}(Z<b) & =0.3 \\
b & =-0.5244
\end{aligned}
$$

0.5244 is negative since 1.65 is to the left of the centre. 0.8416 is positive as 1.78 is to the right of the centre.
Using $z=\frac{x-\mu}{\sigma}$:

$$
\begin{align*}
& \frac{1.78-\mu}{\sigma}=0.8416 \Rightarrow 1.78-\mu=0.8416 \sigma \tag{1}\\
& \frac{1.65-\mu}{\sigma}=-0.5244 \Rightarrow 1.65-\mu=0.5244 \sigma \tag{2}
\end{align*}
$$

Solving simultaneously, (1)-(2):

$$
\begin{aligned}
0.13 & =1.366 \sigma \\
\sigma & =0.095 \mathrm{~m}
\end{aligned}
$$

Substitute in (1): $1.78-\mu=0.8416 \times 0.095$

$$
\mu=1.70 \mathrm{~m}
$$

b

Using $z=\frac{x-\mu}{\sigma}$:

$$
\begin{aligned}
\mathrm{P}(\text { height }>1.74) & =\mathrm{P}\left(z>\frac{1.74-1.70}{0.095}\right) \\
& =\mathrm{P}(z>0.42) \text { (the tables give } \mathrm{P}(Z<0.42) \text { so you need } 1-\text { this probability) } \\
& =1-0.6628 \\
& =0.3372 \quad \text { (calculator gives } 0.3369)
\end{aligned}
$$

16 a $\mathrm{P}(D<21.5)=0.32$ and $\mathrm{P}(Z<a)=0.32 \Rightarrow a=-0.467$. Therefore

$$
\frac{21.5-\mu}{\sigma}=-0.467 \Rightarrow 21.5-22=-0.467 \sigma \Rightarrow \sigma=\frac{0.5}{0.467}=1.071 \text { (4 s.f.). }
$$

b $\mathrm{P}(21<D<22.5)=\mathrm{P}(D<22.5)-\mathrm{P}(D<21)=0.5045$ (4 s.f.).
c $\mathrm{P}(B \geq 10)=1-\mathrm{P}(B \leq 9)=1-0.01899=0.98101$ (using 4 s.f. for the value given by the binomial distribution) or 0.981 (4 s.f.).
$\mathbf{1 7}$ a Let W be the random variable 'the number of white plants'. Then $W \sim \mathrm{~B}(12,0.45)$ ('batches of 12 ': $n=12$; ' 45% have white flowers': $p=0.45$).

$$
\begin{aligned}
\mathrm{P}(W=5) & =\binom{12}{5} 0.45^{5} 0.55^{7}(\text { you can also use tables: } P(W \leq 5)-P(W \leq 4)) \\
& =0.2225
\end{aligned}
$$

b Batches of 12 , so: 7 white, 5 coloured; 8 white, 4 coloured; etc.
$\mathrm{P}(W \geq 7)=1-\mathrm{P}(W \leq 6)$

$$
\begin{aligned}
& =1-0.7393 \\
& =0.2607
\end{aligned}
$$

c Use your answer to part b: $p=0.2607, n=10$:

$$
\begin{aligned}
\mathrm{P}(\text { exactly } 3) & =\binom{10}{3}(0.2607)^{3}(1-0.2607)^{7} \\
& =0.2567
\end{aligned}
$$

d A normal approximation is valid, since n is large (>50) and p is close to 0.5 . Therefore $\mu=n p=150 \times 0.45=67.5$ and $\sigma=\sqrt{n p(1-p)}=\sqrt{67.5 \times 0.55}=\sqrt{37.125}=6.093$ (4 s.f.). Now $\mathrm{P}(X>75) \approx \mathrm{P}(N>75.5)=0.0946$ (3 s.f.).

18 a Using the binomial distribution, $\mathrm{P}(B=35)=\binom{80}{35} \times 0.48^{35} \times 0.52^{45}=0.06703$.
b A normal approximation is valid, since n is large (>50) and p is close to 0.5 . Therefore $\mu=n p=80 \times 0.48=38.4$ and $\sigma=\sqrt{n p(1-p)}=\sqrt{38.4 \times 0.52}=\sqrt{19.968}=4.469(4$ s.f. $)$. Now $\mathrm{P}(B=35) \approx \mathrm{P}(34.5<N<35.5)=0.0668$ (3 s.f.).
Percentage error is $\frac{0.06703-0.0668}{0.06703}=0.34 \%$.
19 Remember to identify which is H_{0} and which is H_{1}. This is a one-tail test since we are only interested in whether the time taken to solve the puzzle has reduced. You must use the correct parameter (μ) :
$\mathrm{H}_{0}: \mu=18 \quad \mathrm{H}_{1}: \mu<18$
Using $z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}, z=\frac{(16.5-18)}{\left(\frac{3}{\sqrt{15}}\right)}=-1.9364 \ldots$
Using the percentage point table and quoting the figure in full:
5% one tail c.v. is $z=-1.6449$

$$
-1.9364<-1.6449, \text { so }
$$

significant or reject H_{0} or in critical region.
State your conclusion in the context of the question:
There is evidence that the (mean) time to complete the puzzles has reduced.
Or Robert is getting faster (at doing the puzzles).

20 a $\mathrm{P}(Z<a)=0.05 \Rightarrow-1.645$. Using that $\mathrm{P}(L<1.7)=0.05$ means that
$\frac{1.7-\mu}{0.4}=-1.645 \Rightarrow 1.7-\mu=-0.658 \Rightarrow \mu=2.358$
b $\mathrm{P}(L>2.3)=0.5576$ (4 s.f.) and so, using the binomial distribution, $\mathrm{P}(B \geq 6)=1-\mathrm{P}(B \leq 5)=1-0.4758=0.5242$ (4 s.f.).
c It is thought that the mean length of the female rattlesnakes is 1.9 m , and a hypothesis test is needed to conclude whether the mean length is not equal to 1.9 m . Therefore,
$H_{0}: \mu=1.9$
$H_{1}: \mu \neq 1.9$
Sample size: 20. Therefore, the sample population is initially thought to have distribution $\bar{M} \sim N\left(1.9, \frac{0.3^{2}}{20}\right)$. By using the inverse normal distribution, $\mathrm{P}(\bar{M}<1.768)=0.025$ and $\mathrm{P}(\bar{M}>2.032)=0.025$, meaning that the critical region is below 1.768 and above 2.032
d There is sufficient evidence to reject H_{0}, since $2.09>2.032$; i.e. there is sufficient evidence to say, at the 5% level, that the mean length of the female rattlesnakes is not equal to 1.9 metres.

21 It is thought that the daily mean temperature in Hurn is less than $12^{\circ} \mathrm{C}$, and so a hypothesis test is needed to conclude whether, at the 5% level of significance, the mean temperature is less than $12{ }^{\circ} \mathrm{C}$. Therefore,
$H_{0}: \mu=12$
$H_{1}: \mu<12$
Sample size: 20. Therefore, the sample population is initially thought to have distribution $\bar{T} \sim N\left(12, \frac{2.3^{2}}{20}\right)$. By using the inverse normal distribution, $\mathrm{P}(\bar{T}<11.154)=0.05$, meaning that the critical region consists of all values below 11.154 . Since $11.1<11.154$, there is sufficient evidence to reject H_{0}; i.e. there is sufficient evidence to say, at the 5% level, that the mean daily temperature in Hurn is less than $12{ }^{\circ} \mathrm{C}$.

Challenge

1 a Since A and B could be mutually exclusive, $\mathrm{P}(A \cap B) \geq 0$. Since $\mathrm{P}(A \cap B) \leq \mathrm{P}(B)=0.3$, we have that $0 \leq \mathrm{P}(A \cap B) \leq 0.3$ and so $q=\mathrm{P}\left(A \cap B^{\prime}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$. Therefore $0.4 \leq p \leq 0.7$
b First, $\mathrm{P}(B \cap C) \leq \mathrm{P}(B)=0.3$ and so $q \leq \mathrm{P}(B \cap C)-\mathrm{P}(A \cap B \cap C) \leq 0.25$. Moreover, it is possible to draw a Venn diagram where $q=0$, and so $0 \leq q \leq 0.25$

Challenge

2 a We wish to use a hypothesis test to determine (at the 10% significance level) whether the support for the politician is 53%. A normal distribution is suitable, and we use the model given by $\mu=n p=300 \times 0.53=159$ and $\sigma=\sqrt{n p(1-p)}=\sqrt{159 \times 0.47}=\sqrt{74.73}=8.645$ (4 s.f.).
Therefore,
$H_{0}: \mu=159$
$H_{1}: \mu \neq 159$
By using the inverse normal distribution, $\mathrm{P}(\bar{X}<144.78)=0.05$ and $\mathrm{P}(\bar{X}>173.22)=0.05$ (2 d.p.) and so the critical region consists of the values below 144.78 and above 173.22
b Since 173 is not within the critical region, there is not sufficient evidence to reject H_{0} at the 10% significance level; i.e. there is not sufficient evidence to say, at the 10% level, that the politician's claim that they have support from 53% of the constituents is false.

