

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			mm m
Page 2	Mark Scheme	Syllabus	P. Mar
	Cambridge International A Level – October/November 2014	9709	72 415 55
Mark Scheme Notes			MMM. My Marins P. 72 72 Scioud.com
Marks	are of the following three types:		17

Mark Scheme Notes

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally • independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following • on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			mm.n. m
Page 3	Mark Scheme	Syllabus	PL May Hath
	Cambridge International A Level – October/November 2014	9709	
The fo	ollowing abbreviations may be used in a mark scheme or used on the	scripts:	12 Iscioud.com
AEF	Any Equivalent Form (of answer is equally acceptable)		m

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt[4]{"}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

				mm. B. M.		
Γ	Page 4	Mark Scheme Syllabus PL 173				
l	!	Cambridge International A Level – October/November 2014 9709 72				
1		$N(-35, 60^{2} + 4 \times 28^{2}) \qquad N(35, 60^{2} + 4 \times 28^{2})$ $\frac{0 - (-35)}{\sqrt{6736'}} (= 0.426) \qquad \frac{0 - 35}{\sqrt{6736'}} (= -0.426)$	B1 B1 M1	Mun. Mun. Mun. Mun. Mun. Mun. Mun. Mun.		
		$ \begin{array}{l} 1 - \Phi(``0.426'') \\ = 0.335 \ (3 \ \text{sf}) \end{array} $	M1 A1 5 Total: 5	For use of tables and finding area consistent with working		
2	(i)	(Bin) with $n > 50$ and mean (or np) < 5 Po(1.5) $1 - e^{-1.5}$	B1 B1 M1	Accept n 'large', p 'small' Poisson with correct mean stated or implied Poisson $1 - P(X = 0)$; allow incorrect λ ; allow 1 end error		
		= 0.777 (3 sf)	A1 4			
	(ii)	$3.5 \\ e^{-3.5} \left(\frac{3.5^4}{4!} + \frac{3.5^5}{5!} + \frac{3.5^6}{6!} \right)$	B1 M1	Correct mean stated or implied Poisson P($X = 4, 5, 6$); allow incorrect λ ; allow 1 end error		
<u> </u>		= 0.398 (3 sf)	A1 3			
<u> </u>	!		Total: 7			
3	(a)	$\int_{0}^{0.5} (1.5t - 0.75t^{2}) dt \text{o.e.}$ = $[0.75t^{2} - 0.25t^{3}]_{0}^{0.5}$ o.e.	M1	Attempt int $f(t)$		
	ļ	$= \left[0.75t^2 - 0.25t^3 \right]_{0}^{0.5} \text{ o.e.}$ $= \frac{5}{32} \text{ or } 0.156 \text{ (3 sf)}$	A1 A1 3	Correct integration and limits		
		32	AI J			
	(b) (i)	$\frac{1}{2}\pi a^{2} = 1 \text{or } \pi a^{2} = 2 \text{oe} \\ a = \sqrt{\frac{2}{\pi}} \text{or } 0.798 \text{ (3 sf)}$	M1	Attempt to find the area and equate to 1		
		$a = \sqrt{\frac{2}{\pi}}$ or 0.798 (3 sf)	A1 2			
	(ii)	0	B1 1			
	(iii)	Symmetry stated, seen or implied 0.8	M1 A1 2	Could be a diagram As final answer		
			Total: 8			
4	(i)	$Var(P_s) = \frac{\frac{33}{150} \times \frac{150 - 33}{150}}{150} (= 0.001144)$ $z = 2.576$	M1 B1	Seen. Accept 2.574 to 2.579		
	ļ	$\frac{33}{150} \pm z\sqrt{0.001144'}$	M1	Expression of correct form. Any z		
		= 0.133 to 0.307 (3 sf)	A1 4	Must be an interval		

Page 5	Mark Scher		Syllabus P. 4
Faye J	Cambridge International A Level –		mber 2014 9709 72 72
	[
(ii)	$\frac{19035}{150}$ (= 126.9 =127(3sf))	B1	Syllabus P. Manathscious
	$\left \frac{150}{149} \left(\frac{4054716}{150} - \left(\frac{19035}{150} \right)^2 \right) \right $ o.e.	M1	For use of a correct formula
	= 11001.17 or 11000(3 sf)	A1 3	
(iii)	Ignore nos > 9526B1random nosIgnore repeatsB13from valid methodB13from valid methodSR If zero score, full explanation of method for drawing numbers out of can score B1. NB Systematic sampling follows the		from valid method from valid method SR If zero score, full explanation of method for drawing numbers out of a hat can score B1. NB Systematic sampling follows the scheme with first B1 for some way of
		Total: 10	
(i)	$\frac{4.8}{\sqrt{40}}$	B1	or $\frac{4.8^2}{40}$. Accept $4.8\sqrt{40}$ or $4.8^2 \times 40$ for totals method
	$\frac{50.3 - 49.5}{\frac{4.8}{\sqrt{40}}} \qquad (= 1.054)$	M1	For standardising with their SD Accept ± Accept totals method. No mixed methods
	1 – Φ('1.054')	M1	For use of tables and finding area
	= 0.146 (3 sf)	A1 4	consistent with their working
(ii) (a)	Looking for decrease	B1 1	
(b)	H ₀ : Pop mean time spent (or μ) = 49.5 H ₁ : Pop mean time spent (or μ) < 49.5 $\frac{1920}{40}$ - 49.5	B1	Not just "mean time spent"
	$\frac{-40}{\frac{4.8}{\sqrt{40}}} \qquad (=-1.976)$	M1	For standardising. Allow $\div \frac{4.8}{40}$ Accept totals method; CV method. No mixed methods
	'1.976' > 1.555 (or '-1.976' < -1.555)	M1	For valid comparison (area comparison 0.024 < 0.06)
	There is evidence that mean time has decreased.	A1 4	CWO. No contradictions in conclusions
(c)	Population normally distr so No	B1 1	Both needed
		Total: 10	

					Mun. M
	Page 6				Syllabus P. Inau Asu
		Cambridge International A Level – Oc	tober/No	ovem	nber 2014 9709 72 773 5
6	(i)	$\lambda = 4.65$	B1		JUG.CO.
		$e^{-4.65} imes rac{4.65^4}{4!}$	M1		Poisson P($X = 4$) with any λ
		4! = 0.186 (3 sf)	A1	3	
	(ii)	$\lambda = 3.875$	B1		
		$= e^{-3.875} \left(1 + 3.875 + \frac{3.875^2}{2!} \right) = 0.257 (3 \text{ sf})$	$\frac{3.875^2}{2!} = 0.257 (3 \text{ sf}) \qquad M1 \qquad A1 \qquad 3 \qquad P(X=0, 1, 2) \\ Attempted, any \lambda \\ As \text{ final answer} \qquad As \text{ final answer} \qquad As \text{ final answer} \qquad B(X=0, 1, 2) \\ Attempted, any \lambda \\ As \text{ final answer} \qquad B(X=0, 1, 2) \\ Attempted, any \lambda \\ As \text{ final answer} \qquad B(X=0, 1, 2) \\ Attempted, any \lambda \\ As \text{ final answer} \qquad B(X=0, 1, 2) \\ Attempted, any \lambda \\ As \text{ final answer} \qquad B(X=0, 1, 2) \\ B(X=0$		Attempted, any λ
	(iii)	$\lambda = 1.5$	B1		
		$1 - e^{-1.5} \left(1 + 1.5 + \frac{1.5^2}{2!} \right)$	M1		1 - P(X=0, 1, 2) Attempted, any λ
		= 0.191 (3 sf)	A1	3	As final answer
	(iv)	He will reject H ₀ .	B1	1	
			Total: 1	0	