

MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			mm. m. m.
Page 2	Mark Scheme	Syllabus	Pap the Mar
	GCE A LEVEL – October/November 2012	9709	72 The 15
ark Scheme No	otes		Pap T2 Parschoud
Marks are of	the following three types:		··Com

Mark Scheme Notes

Marks are of the following three types:

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally • independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on • from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			Mun
Page 3	Mark Scheme	Syllabus	Pap no ver
	GCE A LEVEL – October/November 2012	9709	
The following	g abbreviations may be used in a mark scheme or use	d on the scripts:	12 ISCIOUDICOM

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through J" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Papty
	GCE A LEVEL – October/November 2012	9709	72

Pa	Page 4 Mark S					Syllabus	Pap
		GCE A LEVEL – Octo	ber/No	overr	ber 2012	9709	72
							where Pa_{μ} $Table Pa_{\mu}$ $Tabl$
$\left(\frac{m}{2}\right)$	2		M1		$y = \frac{1}{2}x$ (atter	mpt at linear equ v	with $c = 0$)
$\left(\frac{m}{2}\right)$	$\left(\frac{m}{2}\right)^2 = \frac{1}{2}$		M1		$\int_0^m (\frac{1}{2}x) \mathrm{d}x =$	$\frac{1}{2}$	
m =	$\sqrt{2}$ or 1.41	(3 sfs)	A1	[3]	(Note: $\pm \sqrt{2}$ as	final answer score	es A0)
	Pop mean = Pop mean >		B1		Allow ' μ ' but	not just 'mean'	
$\frac{25-2}{\frac{4.8}{\sqrt{15}}}$	$\frac{24}{\overline{0}}$		M1		Standardise, w Ignore cc. Acc OR find x _{crit}	with $\sqrt{150}$. The sept sd/var mixes.	
Con	55(2) np <i>z</i> = 2.05 lence that I	4 or 2.055 Hiergro has incr hts	A1 M1 A1ft	[5]	Correct conclu	son (z values/area usion No contradic st can score B0 M	tions
(i)	Mean = 50 = 926 (cer	$00 + 3 \times 142$ nts)	B1				
	$SD = 3 \times 2$ = 105 (cer		M1 A1	[3]	Or 9×35^2 see Accept $\sqrt{1102}$		
(ii)	6×105^{2} $(SD = \sqrt{66})$	5150)	B1ft M1			'105'. ft their (i)	
	= 257 (cer	nts) (3 sf)	A1	[3]	Accept √6615	0	
(i)	$P(X \le 1) = 0.0243$	$= (0.75)^{20} + 20(0.75)^{19}(0.25)$	M1 A1		Attempt correc	ct expression	
	$P(X \le 2) = 0.0913 \text{ cm}$	$= (0.75)^{20} + 20(0.75)^{19}(0.25) + $ ²⁰ C ₂ (0.75) ¹⁸ (0.25) ² or 0.0912	M1 A1		Attempt correct OR Find P(2) = 0.0669 or 0.0	_	
		gion is 0 or 1 pkt contain gift pkts contain gift oe	A1	[5]	$P(X \le 2)$ (S.R. Use of N	their $P(X \le 1) < 0$ Normal: N(5.3.75 ²) $0.5 - 5)/\sqrt{3.75}$ M1	used B1
(ii)	P(Type I)	= 0.0243 (3 sfs)	B1ft	[1]	ft their $P(X \le$	1) dep < 0.05 ft N	ormal
(iii)	2 is outsid No eviden	e rej reg ice to reject claim	M1 A1ft	[2]	or $P(X \le 2) >$ No contradicti		

Page 5		Mark Scheme				Syllabus	Pap	
		GCE A LEVEL – Octol	vem	ber 2012	9709	72 ⁴ 1		
	6 ⁵ , .							
	$\int_3^5 \frac{k}{x-1} \mathrm{d}x =$		M1		Attempt integ	f(x) & = 1' ignored	Pap 72	
	$[k\ln(x-1)]\frac{5}{3} = 1$ k(ln4 - ln2) = 1 kln2 = 1		A1		Correctly integ	grated; ignore limi		
			M1 A1 [4]		Subst of limits 3, 5			
	$(k = \frac{1}{\ln 2})$	AG)	A1 [4]		No errors seen	. No decimals see	1	
(ii)	$\frac{1}{\ln 2} \int_{3}^{x} \frac{1}{x-1} dx$		M1*		Attempt integ '= 0.25'	f(<i>x</i>), unknown lim	it, & '= 0.75'or	
	$\frac{1}{\ln 2} (\ln(x - 1)) =$	$ [-1)]\frac{x}{3} = 0.75 -1) - \ln 2) = 0.75 = (0.75 \times \ln 2 + \ln 2) = 1.75 \times \ln 2 $	A1		oe. Fully corre	ect equn after subst	limits	
	$x - 1 = 2^{1.7}$ x = 4.36 (3)	x^{75} or $x - 1 = 3.36$ 8 sfs)	M1 dep* A1	[4]	oe. Correct ma	nipulation of logs	to find x	
(i)		beople without phones one person in some houses	B1	[1]	or other imply people	ing directory exclu	ides some	
	$Var(p) = \frac{1}{z}$ $z = 2.576$	$\frac{\frac{38}{200}(1-\frac{38}{200})}{200} (=0.0007695)$	M1 B1		Seen			
	38	$\frac{\frac{38}{200}(1-\frac{38}{200})}{200}$			-			
	•	200 261 (3 sfs)	M1 A1	[4]	For correct for Accept 0.262 Must be an int			
(iii)	$z \times \sqrt[6]{0.00}$ $z = 1.802$	07695' = 0.05	M1 A1		$z \times (\text{their sd of})$	(p) = 0.05. Allow	= 0.1	
	Φ('1.802')	(= 0.9642)	M1		Attempt Φ (the	ir z) and find 2Φ –	-1	
	(`0.9642' - x = 93 (2 s))	- (1 - '0.9642') = 0.9284) fs)	A1	[4]				
	$\lambda = 4.8$		B1					
	$E^{-4.8}(1+4) = 0.294 (3)$	$.8 + \frac{4.8^2}{2!} + \frac{4.8^3}{3!})$ sfs)	M1 A1	[3]	P(R = 0, 1, 2 o	r 3), their λ allow	one end error	

$\frac{\mathbf{M}}{\mathbf{CE A LEVEL}} = \frac{\lambda^2}{2!}$ or without or better	ut $e^{-\lambda}$ M	/Nover	nber 2012 $\lambda = 1.6n$ seen of	Syllabus 9709	MMM. My Market Pap My Mathsciou B1 M1
$\times \frac{\lambda^2}{2!}$ or without	ut $e^{-\lambda}$ M]		<u>72</u> * th sciou
2.		11	$\lambda = 1.6n$ seen of		
	Α	.1	$e^{-1.6n} \times \frac{(1.6n)^4}{4!}$	$= \frac{16}{3} e^{1.6n} \times \frac{(1.6n)^2}{2!}$	B1 M1
mplied	B		$\frac{(1.6n)^2}{12} = \frac{16}{3}$ (1.6n = 8) n = 5	or better	A1 A1
×	.9247) M	11 11	Finding correc	rong or no cc. No s	
	,	$(= 1.4375) \qquad M \\ (= 1 - 0.9247) \qquad M$	(= 1.4375) M1 (= 1 - 0.9247) M1	$\begin{array}{c c} (= 1.4375) \\ (= 1 - 0.9247) \\ \end{array} \begin{array}{c c} M1 \\ M1 \\ Finding correct \\ Finding $	(= 1.4375) M1 $(= 1 - 0.9247) M1$ $M1$ $Allow with wrong or no cc. No s$ Finding correct area consistent w