

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level Advanced International Certificate of Education

MARK SCHEME for the November 2003 question papers

MATHEMATICS				
9709/01	Paper 1 (Pure 1), maximum raw mark 75			
9709/02	Paper 2 (Pure 2), maximum raw mark 50			
9709/03, 8719/03	Paper 3 (Pure 3), maximum raw mark 75			
9709/04	Paper 4 (Mechanics 1), maximum raw mark 50			
9709/05, 8719/05	Paper 5 (Mechanics 2), maximum raw mark 50			
9709/06, 0390/06	Paper 6 (Probability and Statistics 1), maximum raw mark 50			
9709/07, 8719/07	Paper 7 (Probability and Statistics 2), maximum raw mark 50			

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

		nn	W. M.
Page 1	Mark Scheme	Syllabus	Un Tare
	MATHEMATICS – NOVEMBER 2003	9709	ally as
	Mark Scheme Notes		W. NY Natistis

Mark Scheme Notes

- Marks are of the following three types:
 - М Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are ٠ generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly ٠ following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

		h	n.n. m
Page 2	Mark Scheme	Syllabus	In Mary
	MATHEMATICS – NOVEMBER 2003	9709	Ath ns
following abb	reviations may be used in a mark scheme or us	ed on the script	W. My Mains Cloud. Co.

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- A penalty of MR -1 is deducted from A or B marks when the data of a MR -1 question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ "marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- This is deducted from A or B marks in the case of premature PA -1 approximation. The PA -1 penalty is usually discussed at the meeting.

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Pure Mathematics : Paper One

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	1

Page 1	Mark Schem	16	Syllabus Paper 201
	A AND AS LEVEL - NOV		003 9709 1 915 a
			SyllabusPaper00397091Complete elimination of x, or of y.
2x ² - Solu	(-2x) = 12 11x+12=0 ation of quadratic $(1\frac{1}{2},8)$ and $(4,3)$	M1 A1 DM1 A1	Complete elimination of x, or of y. Correct quadratic. (or $y^2-11y+24=0$) Correct method of solution $\rightarrow 2$ values All correct
		[4]	(guesswork or TI B1 for one pair of values, full marks for both)
(i) 4	$s^{4}+5=7(1-s^{2}) \rightarrow 4x^{2}+7x-2=0$	B1 [1]	Use of $s^2+c^2=1$. Answer given.
\rightarrow	$4s^4+7s^2-2=0$ $s^2 = \frac{1}{4}$ or $s^2 = -2$ $\sin\theta = \pm \frac{1}{2}$	M1	Recognition of quadratic in s ²
\rightarrow	$\theta = 30^{\circ}$ and 150° $\theta = 210^{\circ}$ and 330°	A1A1√ A1√ [4]	Co. For 180° - "his value" For other 2 answers from "his value", providing no extra answers in the range or answers from $s^2=-1$
$S_n f d \rightarrow d$	a=60, n=48, S_n =3726 prmula used l = \$0.75 erm = a+2d = \$61.50	M1 A1 A1√ [3]	Correct formula (M0 if nth term used) Co Use of a+2d with his d. 61.5 ok.
	$a=6 \text{ ar} =4$ $\therefore r=\frac{2}{3}$ = $a/(1-r) = 18$	M1 M1A1 [3]	a, ar correct, and r evaluated Correct formula used, but needs r <1 for M mark
• •	$x = x^3 - 2x^2 + x$ (+c)) used to give c= 5	B2,1,0 B1√ [3]	Co - unsimplified ok. Must have integrated + use of x=1and y=5 for c
$\rightarrow e$	$x^{2}-4x+1>0$ nd values of 1 and $\frac{1}{3}$ $x<\frac{1}{3}$ and $x>1$	M1 A1 A1 [3]	Set to 0 and attempt to solve. Co for end values – even if $<,>,=,etc$ Co (allow \leq and \geq). Allow $1 < x < \frac{1}{3}$
М ⁹ (4,6) В (4,6) В (4,6)	(i) m of BC = $\frac{1}{2}$ Eqn BC y-6= $\frac{1}{2}(x-4)$ m of CD = -2 eqn CD y-5=-2(x-12)	B1 M1A1√ M1 A1√ [5]	Co Correct form of eqn. $\sqrt{\text{ on m}}="1/2"$." Use of m ₁ m ₂ =-1 $\sqrt{\text{ on his "1/2"}}$ but needs both M marks.
$\stackrel{(ii)}{\rightarrow}$	Sim eqns 2y=x+8 and y+2x=29 C (10,9)	M1 A1	Method for solving Co
		[2]	Diagram only for (ii), allow B1 for (10,9)

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	1

Page 2 Mark Sche	me	Syllabus Paper
A AND AS LEVEL – NO	VEMBER 2	003 9709 1 9th
(i) $20 = 2r + r\theta$ $\rightarrow \theta = (20 / r) - 2$	M1 A1	Www.mymathSyllabusPaper00397091Eqn formed + use of $r\theta$ + at least one r Answer given.
(ii) $A = \frac{1}{2}r^{2}\theta$ $\rightarrow A = 10r - r^{2}$	[2] M1 A1 [2]	Appropriate use of $\frac{1}{2}r^{2}\theta$ Co – but ok unsimplified –eg $\frac{1}{2}r^{2}(20/r)-2)$
(iii) Cos rule PQ ² = $8^{2}+8^{2}-2.8.8\cos 0.5$	M1	Recognition of "chord" +any attempt at trigonometry in triangle.
Or trig $PQ = 2 \times 8 \sin 0.25$	A1	Correct expression for PQ or PQ ² .
\rightarrow PQ = 3.96 (allow 3.95).	A1 [3]	Co
(i) Height = 4	B1 [1]	Pythagoras or guess – anywhere, 4k ok.
$\begin{array}{c} \textbf{B} \\ \textbf{B} \\ \textbf{M} \\ $	B2,1√ B1√ [3]	$\sqrt{10}$ for "4". Special case B1 for $-3i+6j+4k$ $\sqrt{10}$ on "4". Accept column vectors.
6 C n	[3]	(nb if (ii) incorrect, but answers are correct in (iii) allow feedback).
(iii) MC.MN = $-36+16 = -20$ MC.MN = $\sqrt{61}\sqrt{52} \cos\theta$ $\rightarrow \theta = 111^{\circ}$	M1A1√ M1 A1	Use of $x_1y_1+x_2y_2+x_3y_3$. $$ on MC and MN Product of two moduli and $\cos \theta$. Co.
	[4]	Nb If both MC and MN "reversed", allow 111° for full marks.
(i) $y = 72 \div (2x^2)$ or $36 \div x^2$ $A = 4x^2 + 6xy$ $\rightarrow A = 4x^2 + 216 \div x$	B1 M1 A1 [3]	Co from volume = lbh . Attempts most of the faces(4 or more) Co – answer was given.
(ii) $dA/dx = 8x - 216 \div x^2$ = 0 when $8x^3=216$ $\rightarrow x = 3$	M1 DM1 A1 [3]	Reasonable attempt at differentiation. Sets his differential to 0 and uses. Co. (answer = ± 3 loses last A mark)
(iii) Stationary value = 108 cm^2	A1√	For putting his x into his A. Allow in (ii).
$d^{2}A/dx^{2}=8+432 \div x^{3}$ \rightarrow Positive when x=3 Minimum.	M1 A1 [3]	Correct method – could be signs of dA/dx A mark needs d^2A/dx^2 correct algebraically, + x=3 + minimum. It does not need "24".

Page 3	Page 3 Mark Scheme		Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	1

Page 3	Mark Scheme		SyllabusPaper00397091Use of fn of fn. Needs ×3 for M mark. Co.
Fage 5	A AND AS LEVEL – NOVI		003 9709 1
			······································
9	(i) $dy/dx = -24/(3x+2)^2$	M1A1	Use of fn of fn. Needs ×3 for M mark. Co.
A 9= 9 3x+2	Eqn of tangent y-1=- $\frac{3}{8}$ (x-2) Cuts y=0 when x= $\frac{4^2}{3}$	M1A1√	Use of line form with dy/dx. Must use calculus. $$ on his dy/dx. Normal M0.
	Area of Q = $\frac{1}{2} \times 2^{\frac{2}{3}} \times 1 = \frac{4}{3}$	M1A1 [6]	Needs y=0 and ½bh for M mark. (beware fortuitous answers)
	$ fl = \pi \int y^2 dx = \pi \int 64(3x+2)^{-2} dx = \pi [-64(3x+2)^{-1} ÷ 3] mits from 0 to 2 → 8π $	M1 A1A1 DM1 A1 [5]	Uses $\int y^2 + \text{some integration} \rightarrow (3x+2)^k$. A1 without the $\div 3$. A1 for $\div 3$ and π Correct use of 0 and 2. DMO if 0 ignored. Co. Beware fortuitous answers.
10 (i) fg(f(x) = g first, then f $= 8/(2-x) - 5 = 7$	M1 DM1	Correct order - g first, then into f. Correct method of solution of fg=7.
	$\rightarrow x = 1\frac{1}{3}$	A1	Co. (nb gf gets 0/3)
(or f(A)=7, A	$x = 6, g(x) = 6, \rightarrow x = 1\frac{1}{3}$)	[3]	(M1 for 6. M1 for g(x)=6. A1)
Ma	$= \frac{1}{2}(x+5)$ akes y the subject $y = 4 \div (2-x)$ $\Rightarrow g^{-1} = 2 - (4 \div x)$	B1 M1 A1 [3]	Anywhere in the question. For changing the subject. Co – any correct answer. (A0 if f(y).)
→ Us	$4/x = \frac{1}{2} (x+5)$ $x^2+x+8=0$ e of b ² -4ac \rightarrow Negative value No roots.	M1 M1 A1 [3]	Algebra leading to a quadratic. Quadratic=0 + use of b ² -4ac. Correct deduction from correct quadratic.
(iv) 5	y and	B1 B1 B1 [3]	Sketch of f Sketch of f ⁻¹ Evidence of symmetry about y=x.

November 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Pure Mathematics : Paper Two

				Paper 2 22, M1	32
	Page 1		Syllabus	Paper 4m	Mary W
		A AND AS LEVEL – NOVEMBER 2003	9709	2	The second
					SOLA
1	EITHER:	State or imply non-modular inequality e.g. $-2 < 8-3x < 2$, or	$(8-3x)^2 < 2$	2,	*. COD
		or corresponding equation or pair of equations		M1	
		Obtain critical values 2 and $3\frac{1}{3}$		A1	
		State correct answer $2 < x < 3\frac{1}{3}$		A1	
	OR:	State one critical value (probably $x = 2$), from a graphical n	nethod or by		
		inspection or by solving a linear equality or equation State the other critical value correctly		B1 B1	
		-			
		State correct answer $2 < x < 3\frac{1}{3}$		B1	
				[3]	
2		State or imply at any stage $\ln y = \ln k - x \ln a$		B1	
		Equate estimate of $\ln y$ - intercept to $\ln k$		M1	
		Obtain value for k in the range 9.97 ± 0.51		A1	
		Calculate gradient of the line of data points		M1	
		Obtain value for <i>a</i> in the range 2.12 ± 0.11		A1	
				[5]	
3 (i	i) <i>EITHER</i> :	Substitute -1 for x and equate to zero		M1	
	,	Obtain answer <i>a</i> =6		A1	
	OR:	Carry out complete division and equate remainder to zero		M1	
		Obtain answer <i>a</i> =6		A1	
				[2]	
(ii	i)	Substitute 6 for <i>a</i> and either show $f(x) = 0$ or divide by $(x - x)$	2) obtainin	ga	
(-)	remainder of zero	_)	B1	
	EITHER:			B1	
		Attempt to find another quadratic factor by division or insp	ection	M1	
		State factor $(x^2 + x - 3)$		A1	
	OR:	Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 3x^2 -$	5x + 6		
		after division by <i>x</i> - 2		B1	
		Attempt to find a quadratic factor by further division by rel	evant diviso		
		or by inspection State factor $(x^2 + x - 3)$		M1 A1	
				111	
				[4]	
4 (i	i)	State answer $R = 2$		B1	
		Use trig formula to find α		M1	
		Obtain answer $\alpha = \frac{1}{3}\pi$		A1	
		3		[3]	
				r- 1	

		Mnw.mymainscloud.com A1
Page 2	Mark Scheme Syllabus	Paper 47 Mar
	A AND AS LEVEL – NOVEMBER 2003 9709	2 Ally is
(ii)	Carry out, or indicate need for, evaluation of $\cos^{-1}(\sqrt{2}/2)$	M1* 4.00
	Obtain, or verify, the solution $\theta = \frac{7}{12}\pi$	A1
	Attempt correct method for the other solution in range i.e. $-\cos^{-1}(\sqrt{2}/2) + \alpha$. M1(dep*)
	Obtain solution $\theta = \frac{1}{12}\pi$: [M1A0 for $\frac{25\pi}{12}$]	Al
	12 12 12	[4]
		[4]
5 (i)	Make recognisable sketch of $y = 2^x$ or $y = x^2$, for $x < 0$	B1
	Sketch the other graph correctly	B1
		[2]
(ii)	Consider sign of $2^x - x^2$ at $x = -1$ and $x = -0.5$, or equivalent	M1
(1)	Complete the argument correctly with appropriate calculations	Al
		[2]
		[2]
(iii)	Use the iterative form correctly	M1
	Obtain final answer -0.77 Show sufficient iterations to justify its accuracy to 2 s.f., or show the	Al
	is a sign change in the interval $(-0.775, -0.765)$	A1
		[3]
		[9]
6 (i)	State A is $(4, 0)$	B1
	State B is $(0, 4)$	B1
		[2]
(ii)	Use the product rule to obtain the first derivative	M1(dep)
	Obtain derivative $(4 - x)e^x - e^x$, or equivalent	Al
	Equate derivative to zero and solve for x	M1 (dep)
	Obtain answer $x = 3$ only	A1
		[4]
(iii)	Attempt to form an equation in p e.g. by equating gradients of OP	
(111)	and the tangent at P , or by substituting $(0, 0)$ in the equation of the	
	tangent at P	M1
	Obtain equation in any correct form e.g. $\frac{4-p}{p} = 3-p$	A1
	Obtain 3-term quadratic $p^2 - 4p + 4 = 0$, or equivalent	A1
	Attempt to solve a quadratic equation in p	M1
	Obtain answer $p = 2$ only	A1
		[5]
7 (i)	Attempt to differentiate using the quotient, product or chain rule	M1
	Obtain derivative in any correct form	A1
	Obtain the given answer correctly	A1 [3]
		[3]

			B1 B1	12
Page 3	Mark Scheme	Syllabus	Paper 4	Mar S
	A AND AS LEVEL – NOVEMBER 2003	9709	2 31	No No
				-Cloury
(ii)	State or imply the indefinite integral is –cotx		B1	×. CO2
	Substitute limits and obtain given answer correctly		B1	
			[2]	
(iii)	Use $\cot^2 x = \csc^2 x - 1$ and attempt to integrate both term or equivalent Substitute limits where necessary and obtain a correct uns		M1	
	answer	P	A1	
	Obtain final answer $\sqrt{3} - \frac{1}{3}\pi$		A1	
			[3]	
(iv)	Use $\cos 2A$ formula and reduce denominator to $2\sin^2 x$		B1	
	Use given result and obtain answer of the form $k\sqrt{3}$		M1	
	Obtain correct answer $\frac{1}{2}\sqrt{3}$		A1	
	-		[3]	

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS Mathematics and Higher Mathematics : Paper 3

Page 1	Mark Scheme Syllabus Pape	er J.B.
	A AND AS LEVEL – NOVEMBER 2003 9709/8719 3	· 9
	State or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corrected or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or $(2^x - 8)^2 < 5^2$ or $(2^x - 8)^2 < 5^2$.	www.myma responding B1 M1
LIIIILK.	pair of linear equations or quadratic equation $(2^{-3}, 5, 5)$	R1
	Use correct method for solving an equation of the form $2^x = a$	M1
	Obtain critical values 1.58 and 3.70, or exact equivalents	Al
	State correct answer $1.58 < x < 3.70$	A1
OR:	Use correct method for solving an equation of the form $2^x = a$	M1
	Obtain one critical value (probably 3.70), or exact equivalent	A1
	Obtain the other critical value, or exact equivalent State correct ensure $1.58 \le n \le 2.70$	A1
	State correct answer $1.58 < x < 3.70$	A1
		[4]
	nd 3.7. Condone \leq for $<$. Allow final answers given separately. Exact equivalent	s must be
	or logarithms to base 10.] given as logarithms to base 2 can only earn M1 and B1 of the first scheme.]	
	given as regariantes to case 2 can only carrier and 2 i of the first seneme.]	
EITHER:	Obtain correct unsimplified version of the x^2 or x^4 term of the expansion of	
	$(1+\frac{1}{2}x^2)^{-2}$ or $(2+x^2)^{-2}$	M1
	State correct first term $\frac{1}{4}$	B1
	Obtain next two terms $-\frac{1}{4}x^2 + \frac{3}{16}x^4$	A1+A1
e M mark i	is not earned by versions with unexpanded binomial coefficients such as $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$.]	
	given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.]	
	s involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2, 4$ or $\frac{1}{2}$ can earn M1 and A1 for a correct	
nplified tern	n in x^2 or x^4 .]	
OR:	Differentiate expression and evaluate $f(0)$ and $f'(0)$, where $f'(x) = kx(2 + x^2)^{-1}$	-3 M1
	State correct first term $\frac{1}{4}$	B1
	Obtain next two terms $-\frac{1}{4}x^2 + \frac{3}{16}x^4$	A1+A1
low exact d	lecimal equivalents as coefficients.]	
		[4]
	Use correct cos 2A formula, or equivalent pair of correct formulas, to obtain a	n
	equation in $\cos \theta$	M1
	Obtain 3-term quadratic $6\cos^2\theta + \cos\theta - 5 = 0$, or equivalent	A1
	Attempt to solve quadratic and reach $\theta = \cos^{-1}(a)$	M1
	Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians	A1
	Obtain answer 180° or π (or 3.14) radians and no others in range	A1
he answer A	$P = 180^{\circ}$ found by inspection can earn B1.]	
	un autorida the arizon unu and	
	rs outside the given range.]	[5]

		mm.n	12
Page 2	Mark Scheme Syllabus	Paper	Mar a
	A AND AS LEVEL – NOVEMBER 2003 9709/8719	3	Ath is
4(i) EITHER	Obtain terms $\frac{1}{2\sqrt{x}}$ and $\frac{1}{2\sqrt{y}}\frac{dy}{dx}$, or equivalent	B1+B1	MA AREAS
	Obtain answer in any correct form, e.g. $\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$	B1	
OR:	Using chain or product rule, differentiate $(\sqrt{a} - \sqrt{x})^2$	M1	
	Obtain derivative in any correct form	A1	
	Express $\frac{dy}{dx}$ in terms of x and y only in any correct form	A1	
OR:	dx Expand $(\sqrt{a} - \sqrt{x})^2$, differentiate and obtain term $-2 \cdot \frac{\sqrt{a}}{2\sqrt{x}}$, or equivalent	t B1	
	Obtain term 1 by differentiating an expansion of the form $a + x \pm 2\sqrt{a}\sqrt{x}$		
	Express $\frac{dy}{dx}$ in terms of x and y only in any correct form	B1	
		[3]	
(ii)	State or imply coordinates of P are $(\frac{1}{4}a, \frac{1}{4}a)$	B1	
	Form equation of the tangent at <i>P</i>	M1	
	Obtain 3 term answer $x + y = \frac{1}{2}a$ correctly, or equivalent	A1	
		[3]	
5 (i)	Make recognizable sketch of $y = \sec x$ or $y = 3 - x^2$, for $0 < x < \frac{1}{2}\pi$	B1	
× /	Sketch the other graph correctly and justify the given statement	B1	
		[2]	

[Award B1 for a sketch with positive *y*-intercept and correct concavity. A correct sketch of $y = \cos x$ can only earn B1 in the presence of $1/(3-x^2)$. Allow a correct single graph and its intersection with y = 0 to earn full marks.]

(ii)	State or imply equation $\alpha = \cos^{-1}(1/(3-\alpha^2))$ or $\cos \alpha = 1/(3-\alpha^2)$	B1
	Rearrange this in the form given in part (i) i.e. sec $\alpha = 3 - \alpha^2$	B1

[Or work vice versa.]

(iii)	Use the iterative formula with $0 \le x_1 \le \sqrt{2}$	M1
	Obtain final answer 1.03	A1
	Show sufficient iterations to justify its accuracy to 2d.p. or show there is a sign	
	change in the interval (1.025, 1.035)	A1

[3]

[2]

		m	M1 A1	
Page 3	Mark Scheme Syllabus	Paper	Un Mar)))
	A AND AS LEVEL – NOVEMBER 2003 9709/871	9 3] Ather is	
6 (i)	Use product or quotient rule to find derivative		M1 Cloud.Co	
U (I)	Obtain derivative in any correct form		A1	ろ
	Equate derivative to zero and solve a linear equation in x		M1	
	Obtain answer $3\frac{1}{2}$ only		A1	
	2		[4]	
(ii)	State first step of the form $\pm \frac{1}{2}(3-x)e^{-2x} \pm \frac{1}{2}\int e^{-2x} dx$, with or without	ut 3	M1	
	State correct first step e.g. $-\frac{1}{2}(3-x)e^{-2x} - \frac{1}{2}\int e^{-2x} dx$, or equivalent	, with or		
	without 3		A1	
	Complete the integration correctly obtaining $-\frac{1}{2}(3-x)e^{-2x} + \frac{1}{4}e^{-2x}$,	or equivalent	t A1	
	Substitute limits $x = 0$ and $x = 3$ correctly in the complete integral		M1	
	Obtain answer $\frac{1}{4}(5+e^{-6})$, or exact equivalent (allow e^0 in place of	1)	A1	
			[5]	
7 (i) EITHER	: Attempt multiplication of numerator and denominator by $3 + 2i$,			
	or equivalent		M1	
	Simplify denominator to 13 or numerator to $13 + 26i$		Al	
	Obtain answer $u = 1 + 2i$		A1	
OR:	Using correct processes, find the modulus and argument of u		M1	
	Obtain modulus $\sqrt{5}$ (or 2.24) or argument tan ⁻¹ 2 (or 63.4° or 1.11 ra	dians)	A1	
	Obtain answer $u = 1 + 2i$		A1	
			[3]	
(ii)	Show the point U on an Argand diagram in a relatively correct positi	ion	B1√	
()	Show a circle with centre U		B1	
	Show a circle with radius consistent with 2		B1√	
[f.t. on the val	ue of <i>u</i> .]		[3]	
	-			
(iii)	State or imply relevance of the appropriate tangent from O to the circ	cle	B1√	
	Carry out a complete strategy for finding max arg z		M1	
	Obtain final answer 126.9° (2.21 radians)		A1	
	appropriate tangent is sufficient for B1 $\sqrt{.}$] er obtained by measurement earns M1 only.]		[3]	

Page 4	Mark Scheme Syllabus	Paper Nyn Man
T dge 4	A AND AS LEVEL – NOVEMBER 2003 9709/8719	3 allo
		Paper 3 M1 A1 M1 M1
$\mathbf{S}(\mathbf{I})$ ETTHER:	Divide by denominator and obtain a quadratic remainder Obtain $A = 1$	A1
	Use any relevant method to obtain <i>B</i> , <i>C</i> or <i>D</i>	M1
	Obtain one correct answer	A1
	Obtain $B = -1, C = 2, D = 0$	A1
OR:	Reduce <i>RHS</i> to a single fraction and identify numerator with that of $f(x)$	
	Obtain $A = 1$	A1 M1
	Use any relevant method to obtain <i>B</i> , <i>C</i> or <i>D</i> Obtain one correct answer	A1
	Obtain $B = -1$, $C = 2$, $D = 0$	A1
		[5]
(ii)	Integrate and obtain terms $x - \ln (x - 1)$, or equivalent	B1√
	Obtain third term $\ln(x^2 + 1)$, or equivalent	B1√
	Substitute correct limits correctly in the complete integral Obtain given answer following full and exact working	M1 A1
	Obtain given answer following fun and exact working	AI
	first B1 $$ is not available.]	[4]
	pomitted in part (i), treat as if $A = 0$. Thus only M1M1 and B1 $\sqrt{B1}\sqrt{M1}$ are	available.]
) (i)	Separate variables and attempt to integrate $\frac{1}{\sqrt{(P-A)}}$	M1
	Obtain term $2\sqrt{(P-A)}$	A1
	Obtain term $-kt$	A1
		[3]
(ii)	Use limits $P = 5A$, $t = 0$ and attempt to find constant c	M1
	Obtain $c = 4\sqrt{A}$, or equivalent	A1
	Use limits $P = 2A$, $t = 2$ and attempt to find k	M1
	Obtain given answer $k = \sqrt{A}$ correctly	A1
		[4]
(iii)	Substitute $P = A$ and attempt to calculate <i>t</i>	M1
	Obtain answer $t = 4$	A1
		[2]
(iv)	Using answers to part (ii), attempt to rearrange solution to give P in term	
	A and t	M1
	Obtain $P = \frac{1}{4}A(4 + (4 - t)^2)$, or equivalent, having squared \sqrt{A}	A1
		[2]
For the M1.	$\sqrt{(P-A)}$ must be treated correctly.]	

[For the M1, $\sqrt{(P-A)}$ must be treated correctly.]

Page 5	Mark Scheme Syllabus Paper	The Par
	A AND AS LEVEL – NOVEMBER 2003 9709/8719 3	athe ns
0 (;)	Even a constant of l on w in component form $a \in (1 + 2a, a - 2 + 2a)$ on	My Maths B1
0 (i)	Express general point of <i>l</i> or <i>m</i> in component form e.g. $(1 + 2s, s, -2 + 3s)$ or $(6 + t, -5 - 2t, 4 + t)$	B1
	Equate at least two corresponding pairs of components and attempt to solve	DI
	for s or t	M1
	Obtain $s = 1$ or $t = -3$	A1
	Verify that all three component equations are satisfied	A1
	Obtain position vector $3\mathbf{i} + \mathbf{j} + \mathbf{k}$ of intersection point, or equivalent	A1
		[5]
(ii) EITHER:	Use scalar product to obtain $2a + b + 3c = 0$ and $a - 2b + c = 0$	B1
	Solve and find one ratio e.g. <i>a</i> : <i>b</i> State one correct ratio	M1 A1
	Obtain answer $a: b: c = 7: 1: -5$, or equivalent	Al Al
	Substitute coordinates of a relevant point and values of a , b and c in general	AI
	equation of plane and calculate d	M1
	Obtain answer $7x + y - 5z = 17$, or equivalent	A1
OR:	Using two points on l and one on m (or vice versa) state three simultaneous	B1√
	equations in a, b, c and d e.g. $3a + b + c = d$, $a - 2c = d$ and $6a - 5b + 4c = d$ Solve and find one ratio e.g. $a : b$	M1
	State one correct ratio	A1
	Obtain a ratio of three unknowns e.g. $a:b:c=7:1:-5$, or equivalent	Al
	Use coordinates of a relevant point and found ratio to find fourth unknown e.g. d	M1
	Obtain answer $7x + y - 5z = 17$, or equivalent	A1
OR:	Form a correct 2-parameter equation for the plane,	
0111	e.g. $\mathbf{r} = \mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) + \mu(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$	B1
	State 3 equations in x, y, z, λ and μ	M1
	State 3 correct equations	A1√
	Eliminate λ and μ	M1
	Obtain equation in any correct unsimplified form	A1
	Obtain $7x + y - 5z = 17$, or equivalent	A1
OR:	Attempt to calculate vector product of vectors parallel to <i>l</i> and <i>m</i>	M1
	Obtain two correct components of the product	A1
	Obtain correct product, e.g. $7i + j - 5z$	A1
	State that the plane has equation of the form $7x + y - 5z = d$	A1√
	Substitute coordinates of a relevant point and calculate d	M1
	Obtain answer $7x + y - 5z = 17$, or equivalent	A1

[The follow through is on $3\mathbf{i} + \mathbf{j} + \mathbf{k}$ only.]

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

Pa	ge 1	Mark Scheme	Syllabus	Paper	My The
	90 .	A AND AS LEVEL – NOVEMBER 2003	9709	4] laths the
					M. M. M. M. H.
	(i)	The force is 320 N	B1	1	-
	(ii)	For using Newton's second law (3 terms needed)	M1		
		$320 - R = 100 \times 0.5$	A1 $$		
		Resistance is 270 N	A1	3	
	(i)	Speed is 20 ms ⁻¹	B1	1	
	(ii)	For using $s = \frac{1}{2} gt^2$ $45 = \frac{1}{2} 10t^2$	M1		
		Time taken is 3 s	A1	2	
	(iii)	For using $v^2 = u^2 + 2gs$ $(40^2 = 30^2 + 2 \times 10s)$	M1		
		Distance fallen is 35 m	A1	2	
	(i)	For using the idea of work as a force times a distance $(25 \times 2\cos 15^{\circ})$	M1		
		Work done is 48.3 J	A1	2	
	(ii)	For resolving forces vertically (3 terms needed)	M1		
		$N + 25 \sin 15^\circ = 3 \times 10$ ($\sqrt{\cos instead}$ of sin following sin instead of cos in (i))	A1 √		
		Component is 23.5 N	A1	3	
	(i)	KE (gain) = $\frac{1}{2} 0.15 \times 8^2$	B1		
		For using PE loss = KE gain	M1		
		Height is 3.2 m	A1	3	
	(ii)	For using WD is difference in PE loss and KE gain	M1		
		WD = $0.15 \times 10 \times 4 - \frac{1}{2} 0.15 \times 6^2$	A1		
		Work Done is 3.3 J	A1	3	
	(impli (i) $s =$ (ii) $a =$	r candidates who treat <i>AB</i> as if it is straight and vertical citly or otherwise) Max 2 out of 6 marks. $8^2 \div (2 \times 10) = 3.2$ B1 $= 6^2 \div (2 \times 4) = 4.5$ and $R = 0.15 \times 10 - 0.15 \times 4.5 = 0.825$ and $4 \times 0.825 = 3.3$ B1	1		

				nn	N. A. M
F	Page 2	Mark Scheme	Syllabus	Paper	JUN Mary
		A AND AS LEVEL – NOVEMBER 2003	9709	4	W. My Marins
5	(i)	For applying Newton's second law to A or to B (3 terms needed)	M1		·com
		T - 0.6 = 0.4a or $0.1g - T = 0.1a$	A1		
		For a second of the above 2 equations or for 0.1g - 0.6 = 0.5a [Can be scored in part (ii)] (Sign of <i>a</i> must be consistent with that in first equation)	B1		
		Tension is 0.92 N	A1	4	
	(ii)	<i>a</i> = 0.8	B1		
		For using $v = at$	M1		
		Speed = 1.2 ms^{-1}	A1	3	
6	(i)	$T_{\rm BM} = T_{\rm AM}$ or $T_{\rm BM} \cos 30^\circ = T_{\rm AM} \cos 30^\circ$	B1		
		For resolving forces at <i>M</i> horizontally $(2T \sin 30^\circ = 5)$ or for using the sine rule in the triangle of forces $(T \div \sin 60^\circ = 5 \div \sin 60^\circ)$ or for using Lami's theorem $(T \div \sin 120^\circ = 5 \div \sin 120^\circ)$	M1		
		Tension is 5 N A.G.	A1	3	
	(ii)	For resolving forces on <i>B</i> horizontally $(N = T \sin 30^{\circ})$ or from symmetry $(N = 5/2)$ or for using Lami's theorem $(N \div \sin 150^{\circ} = 5 \div \sin 90^{\circ})$	r M1		
		For resolving forces on <i>B</i> vertically (3 terms needed) or for using Lami's theorem	r M1		
		$0.2 \times 10 + F = T \cos 30^{\circ}$ or $(0.2g + F) \div \sin 120^{\circ} = T \div \sin 90^{\circ}$	A1		
		For using $F = \mu R$ (2.33 = 2.5 μ	<i>u</i>) M1		
		Coefficient is 0.932	A1	5	
	(iii)	$(0.2 + m)g - 2.33 = 5\cos 30^{\circ}$ or $mg = 2(2.33)$ m = 0.466	B1 √ B1	2	
7	(i)	For using the idea that area represents the distance travelle	d. M1		
		For any two of $\frac{1}{2} \times 100 \times 4.8$, $\frac{1}{2} \times 200(4.8 + 7.2)$, $\frac{1}{2} \times 200 \times 7.2$ (240, 1200, 720)	A1		
		Distance is 2160 m	A1	3	

			n
Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	4
(ii)	For using the idea that the initial acceleration is the gradier the first line segment or for using $v = at (4.8 = 100a)$		Paper 4
	$v^2 = 2as \ (4.8^2 = 2a \times 240)$	M1	
	Acceleration is 0.048 ms ⁻²	A1	2
(iii)	a = 0.06 - 0.00024t	B1	
	Acceleration is greater by 0.012 ms ⁻² [$\sqrt{\text{ for } 0.06 - \text{ ans}(ii)}$ (must be +ve) and/or wrong coefficient of <i>t</i> in <i>a</i> (<i>t</i>)] [Accept 'acceleration is 1.25 times greater']	B1 √	2
(iv)	<i>B</i> 's velocity is a maximum when $0.06 - 0.00024t = 0$ [$$ wrong coefficient of <i>t</i> in <i>a</i> (<i>t</i>)]	B1 √	
	For the method of finding the area representing $s_A(250)$	M1	
	$240 + \frac{1}{2} (4.8 + 6.6)150 \text{or} \\ 240 + (4.8 \times 150 + \frac{1}{2} \ 0.012 \times 150^2) (1095)$	A1	
	For using the idea that s_B is obtained from integration	M1	
	$0.03t^2 - 0.00004t^3$	A1	
	Required distance is 155 m ($\sqrt{\text{dependent on both M marks}}$)	A1√	6

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

			Munu ny nainscloud com 5 M1 A1
	Page 1	Mark SchemeSyllabusA AND AS LEVEL – NOVEMBER 20039709/8719	Paper Unaith Mains
1		For using Newton's second law with $a = v^2/r$	M1
1		$F = 50\ 000\ \frac{25^2}{1250}$	A1
		1250 Magnitude of the force is 25 000 N	Al
			[3]
,	(\mathbf{i})	For stating or implying that the control of mass is vertically shows the	[2]
2	(i)	For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\overline{y} = 5$	B1
		For using $\tan \theta = \frac{10}{y}$ or equivalent	M1
		$\theta = 63.4^{\circ}$	A1
			[3]
	(ii)	For using $F < \mu R$	M1
	()	$mg\sin\theta < \mu mg\cos\theta$	A1
4.1.	ci c		AI
		or the above 2 marks: tan ϕ where ϕ is the angle of friction	M1
$\phi >$	$> \theta$ becaus	e cone topples without sliding	A1
		Coefficient is greater than 2 (ft on $\tan\theta$ in (i))	A1ft
N.E	3. Direct q	uotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1)	[3]
2		$\tau = 88 \times 0.1$	D1
3	(i)	$T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a)	B1 M1
		(3 term equation needed)	
		Initial acceleration is 100 ms ⁻²	A1
			[3]
	(ii)	For using EPE = $\frac{\lambda x^2}{2L}$ $(\frac{88 \times 0.1^2}{2 \times 0.4})$	M1
		$\frac{2L}{2 \times 0.4}$ Initial elastic energy is 1.1 J	A1
			[2]
	(iii)	Change in GPE = $0.2 \times 10 \times 0.1$	B1
		For using the principle of conservation of energy (KE, EPE and GPE must all be represented)	M1
		$\left[\frac{1}{2}0.2v^2 = 1.1 - 0.2\right]$	
		Speed is 3 ms ⁻¹	A1
			[3]

			www.p	1
Page 2		Syllabus	Paper	Mary ()
	A AND AS LEVEL – NOVEMBER 2003 9	709/8719	5	ATTY SOUTH
4 (i)	e.g. For taking moments about BC		M1	Mu Harns
	Distance of centre of mass of triangular portion is			
	$9.5 + \frac{1}{3} \ge 6 (= 11.5)$		B1	
	$8 \times 9.5 \times 4.75 + \frac{1}{2} \times 8 \times 6 \times 11.5 = (8 \times 9.5 + \frac{1}{2} \times 8 \times 6)$	$) \overline{x}$	A1ft	
	Distance is 6.37 cm		A1	
N.B.	Alternative method e.g. Moments about axis through <i>A</i> perpendicular to <i>AB</i>		M1	
	Distance of C.O.M. of triangular piece removed is 2		B1	
	$(8 \times 15.5) \times 7.75 - (\frac{1}{2} \times 8 \times 6) \times 2 = (124 - 20) \overline{x}_1$		A1ft	
	$(\bar{x}_1 = 9.13)$ therefore distance is 6.37 cm		A1	
			[4]	
(ii)	For taking moments about A For LHS of $80(15.5 - 6.37) = T \times 15.5 \sin 30^{\circ}$ For RHS of above equation Tension is 94.2 N		M1 A1ft A1 A1	
			[4]	
(iii)	For resolving forces on the lamina vertically (3 term equa ($V = 80 - 94.2 \times 0.5$) or taking moments about B ($15.5V = 8 \times 10 \times 6.37$)	ation)	M1	
	Magnitude of vertical component is 32.9 N		A1ft	
			[2]	

				mm	MAN HISCIOUSICOT
	Page 3	Mark Scheme Sylla	abus	Paper	Mar (
		A AND AS LEVEL – NOVEMBER 2003 9709/		5	The no
					CIOUN
5	(i)	For using $\dot{y} = \dot{y}_0 - gt$ with $\dot{y} = 0$ $(t = 2\sin\alpha)$		M1	y.Com
		For using $y = \dot{y}_0 t - \frac{1}{2}gt^2$ with <i>t</i> as found and $y = 7.2$, or show	V	M1	
		t = 1.2 as in (ii)			
		Alternatively for using $y_{max} = \frac{V^2 \sin^2 \alpha}{2g}$ with $y_{max} = 7.2$ and V	= 20		
		or $\dot{y}^2 = \dot{y}_0^2 - 2gy$ with $\dot{y} = 0$		M2	
		$= 400\sin^2 \alpha$			
		$7.2 = \frac{400\sin^2\alpha}{20}$		A1	
		Angle is 36.9°		A1	
				[4]	
	(ii)	Speed on hitting the wall is 20×0.8 (use of ball rebounding at 10 ms ⁻¹ scores B0)		B1ft	
		For using $y = 0 - \frac{1}{2}gt^2$ $(-7.2 = -\frac{1}{2}10t^2)$ or			
		$0 = \dot{y} - gt (0 = 12 - 10t)$		M1	
		t = 1.2		A1	
		Distance is 9.6 m (No ft if rebound velocity = 10 ms^{-1})		A1ft	
		Alternative – speed on hitting the wall is 20×0.8		B1ft	
		Use trajectory equation, with $\theta = 0^{\circ}$		M1	
		$-7.2 = x \tan 0^\circ - \frac{gx^2}{2.8^2 \cos^2 0^\circ}$ (allow ft with halving attempt in	cluding	(10) A1ft	
		x = 9.6 m		A1	
				[4]	
	(iii)	$\dot{y} = \mp 10 \text{ x} 1.2$		B1ft	
		$\theta = \tan^{-1}(\mp)\frac{\dot{y}}{\dot{x}}$ (\dot{x} must have halving attempt. Allow $\dot{x} =$	= 10)	M1	
		Required angle is 56.3°		A1	

[3]

			www	AMA NISHIS DIIISCIOUD.COM
F	Page 4	Mark Scheme Syllabus	Paper 747	13
		A AND AS LEVEL – NOVEMBER 2003 9709/8719	5	the or
6	(i)	For using Newton's second law	M1	cloud.com
		-		17
		$120 - 8v - 80 \times 10 \times 0.1 = 80a$	A1	
		$\frac{1}{5-v} \frac{dv}{dt} = \frac{1}{10}$ from correct working	A1	
			[3]	
	(ii)	For separating the variables and attempting to integrate	M1	
		$-\ln(5-v) = \frac{1}{10}t + (C)$	A1	
		For using $v(0) = 0$ to find C (or equivalent by using limits) (C = -ln5)	M1	
		For converting the equation from logarithmic to exponential form (allow even if + <i>C</i> omitted) $(5 \div (5 - v) = e^{t/10})$	M1	
		$v = 5(1 - e^{-t/10})$ from correct working	A1	
			[5]	
	(iii)	For using $v = \frac{dx}{dt}$ and attempting to integrate	M1	
		$x = 5(t + 10e^{-t/10}) + (C)$	A1ft	
		For using $x(0) = 0$ to find (<i>C</i>) (= -50), then substituting $t = 20$ (or equivalent using limits)	M1	
		Length is 56.8 m	A1	
		OR		
		For using Newton's second law with $a = v \frac{dv}{dx}$, separating the variables a	and	

attempting to integrate $-v - 5\ln(5 - v) = \frac{x}{10} + C$ A1

For using v = 0 when x = 0 to find $C (= -5\ln 5)$, then substituting t = 20 into v(t)

 $(v(20) = 5(1 - e^{-2}) = 4.3233),$ And finally substituting v(20) into the above equation $(x = -50(1 - e^{-2}) + 50 \times 2 = 50 + 50e^{-2})$ M1

Length is 56.8m

A1

M1

[4]

November 2003

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

Page 1	Mark Scher	ne		Syllabus Paper 212
	AICE AND A AND AS LEVEL		'EMB	ER 2003 9709/0390 6 975
x freq OR	0 2 23 17	M1		Syllabus Paper ER 2003 9709/0390 6 For reasonable attempt at the mean using frequency or probs but not using prob=0.5
Mean = $34/4$ Variance = (40, $P(2) = 17/40$ 0 = 0.850 $4 \times 17) / 40 - (0.85)^2$ 978 (exact answer 0.9775) (391/400)	A1 M1 A1ft	4	For correct mean For correct variance formula For correct answer
-	7, 6, 3, 1 cies: 3, 7, 3, 1.5, 0.5 14, 0.006, 0.003, 0.001	M1		For frequencies and attempt at scaling, accept cw/freq but not cw × freq, not cw/mid point
scaled f		A1		For correct heights from their scaled frequencies seen on the graph
5		B1		For correct widths of bars, uniform horiz scale, no halves or gaps or less-than-or-equal tos
0 500 1000	2000 3000 4000 area, m ²	B1	4	Both axes labelled, fd and area or m ² . Not class width
35 - μ = 1	$.496\sigma$ (accept 0.495 or in between) $.282\sigma$ (accept 1.281 or in between, t not 1.28)	M1 A1 A	1	For any equation with μ and σ and a reasonable z value not a prob. Allow cc, $\sqrt{\sigma}$, σ^2 , or – and give M1 A0A1ft for these four cases For 2 correct equations
		M1		For solving their two equations by elim 1 variable sensibly
$\sigma = 8.9$ $\mu = 23.$	1 (accept 8.89 to 8.92 incl) 6	A1 A1	6	For correct answer For correct answer
$4 (i) (0.95)^5 = 0.774$		M1 A1	2	For 0.95 seen, can be implied For correct final answer
(ii) (0.95) ⁴ >	$(0.05)^{1} \times {}_{5}C_{1}$	M1		For any binomial calculation with 3 terms, powers summing to 5
= 0.204		A1	2	For correct answer
(iii) (0.95) ²	× (0.05)	M1		For no Ps, no Cs, and only 3 terms of type $p^2(1-p)$
= 0.0451	(361/8000)	A1	2	For correct answer

		SyllabusPaperBER 20039709/03906For correct shape ie M and F firstUncomAll correct, ie labels and probabilities, no labels
Page 2 Mark Sche	eme	Syllabus Paper
AICE AND A AND AS LEVEL		BER 2003 9709/0390 6
5	M1	For correct shape ie M and F first
0.54 0.95 C 0.54 0.95 NC	A1	All correct, ie labels and probabilities, no labels gets M1 only for (implied)correct shape
0.46 0.02 C F 0.98 NC	M1 A1	For finding P(<i>M</i> and <i>C</i>) and P(<i>F</i> and <i>C</i>) For using 4 correct probs
$P(M C) = \frac{0.54 \times 0.05}{0.54 \times 0.05 + 0.46 \times 0.02}$ $= 0.746 (135/181)$	M1 B1 M1 A1 6	For correct conditional probability For correct numerator For summing two two-factor 'terms' For correct answer
6 (a) (i) 18564 (ii) ${}_{17}C_5$ or $6/18 \times$ their (i) or ${}_{18}C_6 - {}_{17}C_6$ = 6188	B1 1 M1 A1 2	For using 17 and 5 as a perm or comb
(b) (i) 40320 (ii) $5! \times 3! \times {}_{4}C_{1}$ = 2880	B1 1 B1 1 B1 1 B1 1 B1 1 B1 4	For 5! or ${}_5P_5$ used in a prod or quotient with a term \neq 5! For 3! For ${}_4C_1$, may be implied by 4!
7 (i) $z = \pm 1.143$ P(7.8 <t<11)=<math>\Phi(1.143) - 0.5 = 0.8735 - 0.5 = 0.3735 (accept ans rounded to 0.37 to 0.374)</t<11)=<math>	M1 A1 M1 A1 4	For standardising, can be implied, no cc, no σ^2 but accept $\sqrt{\sigma}$ For seeing 0.8735 For subtracting two probs, $p_2 - p_1$ where $p_2 > p_1$ For correct answer
0.374) (ii) $(0.1265)^2 \times (0.8735) \times {}_{3}C_2$ = 0.0419	M1 A1ft 2	For any three term binomial-type expression with powers summing to 3 For correct answer ft on their 0.8735/0.1265
(iii) Not symmetric so not normal Does not agree with the hospital's figures	B1 B1dep 2	For any valid reason For stating it does not agree, with no invalid reasons
8 (i) 18c = 1	M1	For $\sum p_i = 1$
c = 1/18 = 0.0556	A1 2	For correct answer
(ii) $E(X) = 2.78 (= 25/9)(= 50c)$ Var $(X) = 1.17 (= 95/81) (=160c - 2500 \ c^2)$	M1 A1ft M1 A1ft 4	Using correct formula for $E(X)$ For correct expectation, ft on their c For correct variance formula For correct answer ft on their c
(iii) $P(X > 2.78) = 11c$ = 0.611 (= 11/18)	M1 A1 2	For using their correct number of discrete values of X For correct answer

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Schem		Syllabus Paper		
	A AND AS LEVEL – NOVEMBER 2003 9709/8719 7				
$\frac{1.9}{\sqrt{n}} \times 1.96 < 1$ n > 13.9 (1 n = 14	3.87)	equivalent an A1 For correct in	relevant equation	or	
$\lambda = 4.5$ P(X = 2, 3, 4) = = 0.4	$e^{-4.5}\left(\frac{4.5^2}{2!} + \frac{4.5^3}{3!} + \frac{4.5^4}{4!}\right)$ 471	B1For correct mM1For calculatinA1For correct mA1For correct anNB Use of N	ng P(2, 3, 4) their mean umerical expression	n	
=	$\Phi(0.2182) = 1 - \Phi\left(\frac{0-1}{\sqrt{21}}\right)$ $\Phi(0.2182) = 0.586$	M1 For considera M1 For summing			
(i) $\lambda = \frac{20}{80} = 0$ P(X \ge 3) = 1	- /	B1 For $\lambda = 0.25$ M1 For calculatin λ)	ng a relevant Poisson prob(a	ny	
$= 1 - e^{-1}$ = 0.002	2 / 16	M1 For calculating A1 For correct an [4]	g expression for $P(X \ge 3)$ their 2 nswer	l	
(ii) $e^{\frac{-k}{80}} = 0.9$ $\frac{-k}{80} = -0.1053$ k = 8.43	1 2	M1 For equating	t/80 in an expression for P(their expression to 0.9 he associated equation nswer cwo	0)	
(i) P($\overline{X} > 1800$)	$= \Phi(2.179) = 0.985$	B1For $117/\sqrt{26}$ M1For standardiA1For correct and [3]	sing and use of tables		

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	7

Page 2			Syllabus Paper 477
ļ	A AND AS LEVEL –	NOVEMB	ER 2003 9709/8719 7 %
$H_0: \mu = 1850$		B1	SyllabusPaperER 20039709/87197Both hypotheses correct
$H_1: \mu \neq 1850$			
Test statistic	$c = \frac{1833 - 1850}{117/\sqrt{26}}$	M1	Standardising attempt including standard error
	= -0.7409	A1	Correct test statistic (+/-)
Critical valu	e $z = \pm 1.645$	M1	Comparing with $z = \pm 1.645$, + with + or – with – (or equiv area comparison) ft 1 tail test $z=1.282$
Accept H ₀ ,	no significant change	A1ft	For correct conclusion on their test statistic and their <i>z</i> . No contradictions.
		[5]	
	ng H_0 when it is true ing H_0 when it is false	B1 B1 [2]	Or equivalent
(ii) (a) P(NNNNN) under $H_0 = (0.94)^5$ = 0.7339 P(Type I error) = 1 - 0.7339 = 0.266		M1* A1 M1* A1ft dep*	For evaluating P(NNNNN) under H_0 For correct answer (could be implied) For identifying the Type I error outcome For correct final answer SR If M0M0 allow B1 for Bin(5,0.94)used
		[4]	
= 0.1	NNN) under $H_1 = (0.7)^5$ 68 e II) error = 0.168	M1 M1 A1	For Bin(5,0.7) used For P(NNNN) under H ₁ For correct final answer
		[3]	
(i) $\int_{0}^{\infty} k e^{-3x} dx$ $0 - \frac{-k}{3} =$	c = 1	M1	For attempting to integrate from 0 to ∞ and putting the integral = 1
$0 - \frac{-k}{2} =$	$1 \Rightarrow k = 3$	A1	For obtaining given answer correctly
5		[2]	
$\int_{0}^{1} 3e^{-3x} dx = 0$	0.25	M1	For equating $\int 3e^{-3x} dx$ to 0.25 (no limits
$\left[- e^{-3x} \right]_{0}^{q_{1}} = -e^{-3q_{1}} +$	0.25 1 = 0.25	M1	needed) For attempting to integrate and substituting (sensible) limits and rearranging
$0.75 = e^{-3q^1}$ $q_1 = 0.0959$		A1	For correct answer
		[3]	
		[~]	

					www.p	12
Page 3	Mark Sche	me		Syllabus	Paper 47	No.
	A AND AS LEVEL – NOVEMBER 2003			9709/8719	7 91	No No
		1	1			°C/0,
=	$xe^{-3x} dx$ $\left[-xe^{-3x}\right]_{0}^{\infty} - \int_{0}^{\infty} -e^{-3x} dx$ $\left[\frac{e^{-3x}}{-3}\right]_{0}^{\infty}$ 0.333 or 1/3	B1 M1 A1 M1 A1 A1 [6]	For correct staten For attempting to needed) For $-xe^{-3x}$ or $-xe^{-3x}$ or $-xe^{-3x}$ For attempt $\int -xe^{-3x}$ For $0+\left[\frac{e^{-3x}}{-3}\right]$ For correct answ	to integrate $3xe^{-3x}/3$ $e^{-3x} dx$ (their ∞	e ^{-3x} (no limits	-ud.com