

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level Advanced International Certificate of Education

MARK SCHEME for the June 2004 question papers

	9709 MATHEMATICS
9709/01	Paper 1 (Pure 1), maximum raw mark 75
9709/02	Paper 2 (Pure 2), maximum raw mark 50
9709/03, 8719/03	Paper 3 (Pure 3), maximum raw mark 75
9709/04	Paper 4 (Mechanics 1), maximum raw mark 50
9709/05, 8719/05	Paper 5 (Mechanics 2), maximum raw mark 50
9709/06, 0390/06	Paper 6 (Probability and Statistics 1), maximum raw mark 50
9709/07, 8719/07	Paper 7 (Probability and Statistics 2), maximum raw mark 50

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

	maximum	minimum	mark required	for grade:
	mark available	А	В	E
Component 1	75	63	56	31
Component 2	50	37	33	18
Component 3	75	61	55	29
Component 4	50	38	34	18
Component 5	50	36	32	17
Component 6	50	38	34	19
Component 7	50	42	37	22

Grade thresholds taken for Syllabus 9709 (Mathematics) in the June 2004 examination.

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

www.nymathscloud.com

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

- WWW. MYMathscloud.com The following abbreviations may be used in a mark scheme or used on the scripts:
 - AEF Any Equivalent Form (of answer is equally acceptable)
 - AG Answer Given on the guestion paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - CWO Correct Working Only – often written by a 'fortuitous' answer
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)
 - SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ "marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Paper 1 (Pure 1)

Page 1	Mark	Sche	me		Syllabus	Paper 14m
	A AND AS LEV			2004	9709	Paper 1
(i) a/(1–r) = 256	and a = 64	M1		Use of correct for	mula	
$\rightarrow r = \frac{3}{4}$		A1		Correct only		
			[2]			10
(ii) $S_{10} = 64(1 - 3)$ $\rightarrow S_{10} = 242$	-0.75 ¹⁰) (1–0.75)	M1 A1		Use of correct for Correct only	mula – 0.75	" not 0.75"
	-	///	[2]	Concoconny		
$\int_{0}^{1} \sqrt{3x+1} dx = ($	$(3x+1)^{1.5} \div 1.5$	B1		MI for $(3x+1)^{1.5}$ -	÷1.5	
	then 3	M1		For division by 3		
→[]at1-[]a	at O	M1		Must attempt [] a and be using an i	· ·	,
→ 16/9 – 2/9 =	14/9 or 1.56	A1		Fraction or decim	-	
			[4]			
(i) $\sin^2 \theta$ + 3sin ($\theta \cos \theta = 4\cos^2 \theta$					
divides by co	$hos^2 \theta$	M1		Knowing to divide	•	
\rightarrow tan ² θ + 3	$\tan \theta = 4$	A1	101	Correct quadratic	: (not nec = ())
(ii) Solution tan	$\theta = 1 \text{ or } \tan \theta = -4$	M1	[2]	Correct solution c	of quadratic =	= 0
→θ = 45° o	r 104.0°	A1	A1	Correct only for e	ach one.	
			[3]			
(i) Coeff of $x^3 =$	6C3 x 2 ³	B1	B1	B1 for 6C3 B1 for	or 2 ³	
.,	160	B1		B1 for 160		
(ii) Term in x ² =	$6C2 \times 2^2 = 60$	B1	[3]	B1 for 60 (could b	be given in (i))
reqd coeff =	1 x (i) – 3 x 60	M1		Needs to conside	er 2 terms	
→ - 20		A1		со		
			[3]			
6 P	A A A A A A A A A A A A A A A A A A A					
(i) Area of secto	$r = \frac{1}{2} 6^2 0.8 \qquad (14.4)$	M1		Use of $\frac{1}{2}r^2\theta$ with		
Area of trian	gle = $\frac{1}{2}.10^2$.sin0.8 (35.9)	M1 A1		Use of ½absinC of	or ½ bh with	trig
\rightarrow Shaded a	rea = 21.5	AI	[3]	Correct only		
	C × C Q (4 C)				vedie	
(ii) Arc length = CD (by cos r	6 x 0.8 (4.8) rule) or 2 x 10sin0.4 (7.8)	M1 M1	A1	Use of s=r0 with r Any correct methor		in (i)
	r = 8 + 4.8 + 7.8 = 20.6	A1	,	Correct only		
			[4]	-		

	Page 2	Mark S	Scheme		Syllabus	Paper
		A AND AS LEV	EL – JUNE	2004	9709	1 913
5.	\rightarrow x ² +x-6	k (or y) completely =0 or y ² –17y+66=0 quadratic = 0 nd (–3, 11)	M1 A1 DM1 A1 [4]	Needs x or y remo Correct only (no Equation must = 0 Everything ok.	need for = 0)	
			B1 √ M1 M1 A1 [4]	For his two points Use of y-step x- \cdot Use of m ₁ m ₂ = -1 Any form – needs	step (beware	
7.	Gradient of Gradient of	nal y–3 = 2(x–6) (y=2x–9)	M1 A1 DM1 DM1 A1	Any attempt at dif For $-\frac{1}{2}$ Use of $m_1m_2 = -1$ Correct method for Ans given – bewa	or eqn of line	answers.
		$\frac{24}{x^2}dx = \pi \left[-324x^{-1}\right].$ at x=6 – value at x= 4.5	[5] M1 A1 DM1	Use of $\int y^2 dx$ fo Use of 6 and 4.5	r M. correcti	(needs π) for A
	$-54 \pi7$		A1 [4]	Beware fortuitous	answers (an	is given)
J.	(i) $2h + 2r + \pi$ $\rightarrow h = 4 - r$		M1 A1 [2]	Reasonable atten correct formula fo Co in any form wi	$r \frac{1}{2}C \text{ or } C.$	4 lengths +
	→ A = 8r – (iii) dA/dr = 8 – = 0 when r	$4r - \pi r$ = 1.12 (or 8/(4+ π))	M1 A1 [2] M1 A1 DM1 A1 [4]	Adds rectangle + Co beware fortuit Knowing to differe Setting his dA/dr	ous answers entiate + som to 0. Decimal	(ans given) le attempt or exact ok.
	(iv) d ² A/dr ² = – This is nega	4 – π ative → Maximum	M1 A1 [2]	Looks at 2 nd differ complete method Correct deduction correct.		

Page 3	Mark Scheme	Syllabus
	A AND AS LEVEL – JUNE 2004	9709

Page 3	Mark Scheme		Syllabus	Paper 4m
A AND	AS LEVEL – JUNE 2	004	9709	1
$= \begin{pmatrix} 1\\3\\-1 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 3\\-1\\3 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 4\\2\\p \end{pmatrix}, \overrightarrow{OC}$	$\vec{D} = \begin{pmatrix} -1\\0\\q \end{pmatrix}$	Condone notat	C	
\overrightarrow{AB} = b–a = 2i – 4j + 4k	M1	Use of b–a, ra	ther than h+	a or a–b
$AD - \mathbf{b} - \mathbf{a} - 2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$ Unit vector = $(2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) \sqrt{(2^2 + 1)^2}$				\longrightarrow
$= \pm (2i - 4j + 4k) = 6$	A1	Dividing by the Co (allow – for		
- ± (21 -+j + 4K) 0	[3]		canuluales	using a-b)
$\overrightarrow{OA.OC} = 4 + 6 - p$ = 0 for 90° $\rightarrow p = 10$	M1 DM1 A1 [3]	Use of $x_1x_2 + y_2$ Setting to 0 + a co		olve
i) $(-2)^2 + 3^2 + (q+1)^2 = 7^2$	M1	Correct metho	d for length	with ± d–a, d+ a
\rightarrow (q+1) ² = 36 or q ² + 2q = 35	A1	Correct quadra	atic equation	ı
q = 5 and q = -7	DM1 A1 or B1 B [4]			
$f: x \mapsto x^2 - 2x, g: x \mapsto 2x + 3$				
(i) $x^2 - 2x - 15 = 0$ End-points -3 and 5	M1 A1	Equation set to Correct end-po		
\rightarrow x < -3 and x > 5	A1	Co-inequalities	s – not ≤ or ≥	2
ii) Uses dy/dx = 2x–2 = 0 or (x–1) ² – Minimum at x = 1 or correct t		Any valid comp Correct only	plete method	d for x value
Range of y is $f(x) \ge -1$	A1	Correct for his	value of "x"	– must be ≥
No inverse since not 1 : 1 (or equiva		Any valid state	ement.	
(iii) $gf(x) = 2(x^2 - 2x) + 3$ (2x ² -	– 4x +3) M1 [4]	Must be gf not	fg – for uns	implified ans.
$b^2 - 4ac = 16 - 24 = -8 \rightarrow -ve$	M1	Used on quadr	ratic=0, ever	n if fg used.
\rightarrow No real solutions.	A1 [3]	Must be using and statement	-	ect assumption
[or gf(x)=0 \rightarrow f(x)=-3/2. Imposs fi				
(iv) $y = 2x + 3$ correct line on diagram	am B2,1,0 [2]	3 things neede • g correct,	ed –B1 if one	e missing.
Either inverse as mirror image in or $y = g^{-1}(x) = \frac{1}{2}(x-3)$ drawn		• g ⁻¹ correct	 not paralle or statemer 	el to g nt re symmetry

Formula \rightarrow must be correct and correctly used – allow for numerical errors though in b² and –4ac. Factors \rightarrow attempt to find 2 brackets. Each bracket then solved to 0.

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Paper 2 (Pure 2)

Dou				
ray	le 1 Mark Scheme A AND AS LEVEL – JUNE 2004	Syllabus 9709	Paper 2	nath aths
				ISCIOL.
	e logarithms to linearise an equation		M1	natiscioud.con
Ob	btain $\frac{x}{y} = \frac{\ln 5}{\ln 2}$ or equivalent		A1	
	<i>y</i> In 2 otain answer 2.32		A1	3
•••				-
(i)		with $x_1 = 3$	M1	
	Obtain final answer 3.142 Show sufficient iterations to justify its accuracy to 3 d.p		A1 A1	3
				•
(ii)	State any suitable equation e.g. $x = \frac{1}{5} \left(4x + \frac{306}{x^4} \right)$		B1	
	Derive the given answer α (or x) = $\sqrt[5]{306}$		B1	2
(i)			M1	
	Obtain answer $\alpha = -1$		A1	2
(ii)	At any stage, state that $x = 3$ is a solution	$\frac{1}{2}$	B1	
	EITHER: Attempt division by (x–3) reaching a partial que Obtain guadratic factor 2x ² + 5x +2	Jotient of 2x ⁻ + KX	M1 A1	
	Obtain solutions $x = -2$ and $x = -\frac{1}{2}$		A1	
	OR: Obtain solution $x = -2$ by trial and error		B1	
	Obtain solution $x = -\frac{1}{2}$ similarly	in the Md is some of	B2	4
	[If an attempt at the quadratic factor is made by inspect	tion, the M1 is earned	IT IT TAACHAS	
	unknown factor of $2x^2 + bx + c$ and an equation in b and	d/or c.]	in it reaches	
(i)	unknown factor of $2x^2 + bx + c$ and an equation in b an State answer R = 5	d/or c.]	B1	an
(i)	unknown factor of $2x^2 + bx + c$ and an equation in b an State answer R = 5 Use trigonometric formulae to find α	d/or c.]	B1 M1	
(i)	unknown factor of $2x^2 + bx + c$ and an equation in b an State answer R = 5	d/or c.]	B1	3
	unknown factor of $2x^2 + bx + c$ and an equation in b an State answer R = 5 Use trigonometric formulae to find α Obtain answer α = 53.13° Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5	d/or c.]	B1 M1 A1 M1	
	unknown factor of $2x^2 + bx + c$ and an equation in b an State answer R = 5 Use trigonometric formulae to find α Obtain answer α = 53.13° Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0°	d/or c.]	B1 M1 A1 M1 A1√	
	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer α = 53.13° Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180°	d/or c.]	B1 M1 A1 M1 A1√ M1	3
	unknown factor of $2x^2 + bx + c$ and an equation in b an State answer R = 5 Use trigonometric formulae to find α Obtain answer α = 53.13° Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0°	d/or c.]	B1 M1 A1 M1 A1√	
(ii)	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer α = 53.13° Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180° Obtain answer 62.7° and no others in the range	d/or c.]	B1 M1 A1 M1 A1√ M1	3
(ii) (iii	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer α = 53.13° Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180° Obtain answer 62.7° and no others in the range [Ignore answers outside the given range.]	d/or c.] ⁽⁾) — 64.16° — 53.13°	B1 M1 A1 M1 A1√ M1 A1√	3
(ii)	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer α = 53.13° Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180° Obtain answer 62.7° and no others in the range [Ignore answers outside the given range.] State least value is 2 State derivative of the form (e ^{-x} ± xe ^{-x}). Allow xe ^x ± e ^x { Obtain correct derivative of e ^{±x} - xe ^{-x}	d/or c.] ⁽⁾) — 64.16° — 53.13°	B1 M1 A1 M1 A1√ B1√ B1√ M1 A1	3
(ii) (iii	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer $\alpha = 53.13^{\circ}$ Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180° Obtain answer 62.7° and no others in the range [Ignore answers outside the given range.] State least value is 2 State derivative of the form (e ^{-x} ± xe ^{-x}). Allow xe ^x ± e ^x {	d/or c.] ⁽⁾) — 64.16° — 53.13°	B1 M1 A1 M1 A1√ M1 A1√ B1√	3
(ii) (iii (i)	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer $\alpha = 53.13^{\circ}$ Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180° Obtain answer 62.7° and no others in the range [Ignore answers outside the given range.] State least value is 2 State derivative of the form (e ^{-x} ± xe ^{-x}). Allow xe ^x ± e ^x { Obtain correct derivative of e ^{±x} - xe ^{-x} Equate derivative to zero and solve for x Obtain answer x = 1	d/or c.] ⁽⁾ – 64.16° – 53.13° via quotient rule}	B1 M1 A1 M1 A1√ M1 A1√ B1√ M1 A1 M1 A1	3 4 1
(ii) (iii	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer $\alpha = 53.13^{\circ}$ Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180° Obtain answer 62.7° and no others in the range [Ignore answers outside the given range.] State least value is 2 State derivative of the form (e ^{-x} ± xe ^{-x}). Allow xe ^x ± e ^x { Obtain correct derivative of e ^{±x} - xe ^{-x} Equate derivative to zero and solve for x Obtain answer x = 1	d/or c.] ⁽⁾ – 64.16° – 53.13° via quotient rule} 7	B1 M1 A1 M1 A1√ B1√ M1 A1 M1 A1 M1	3 4 1
(ii) (iii (i)	unknown factor of $2x^2 + bx + c$ and an equation in b and State answer R = 5 Use trigonometric formulae to find α Obtain answer $\alpha = 53.13^{\circ}$ Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5 Obtain answer 11.0° Carry out correct method for the second root e.g. 180° Obtain answer 62.7° and no others in the range [Ignore answers outside the given range.] State least value is 2 State derivative of the form (e ^{-x} ± xe ^{-x}). Allow xe ^x ± e ^x { Obtain correct derivative of e ^{±x} - xe ^{-x} Equate derivative to zero and solve for x Obtain answer x = 1 Show or imply correct ordinates 0, 0.367879, 0.2706	d/or c.] ⁽⁾ – 64.16° – 53.13° via quotient rule} 7	B1 M1 A1 M1 A1√ M1 A1√ B1√ M1 A1 M1 A1 B1	3 4 1

					www.p	12
	Page	2	Mark Scheme	Syllabus	Paper 4	Mary
			A AND AS LEVEL – JUNE 2004	9709	2	ATT IS
6	(i)		that $\frac{dx}{dt} = 2 + \frac{1}{t}$ or $\frac{dy}{dt} = 1 - \frac{4}{t^2}$, or equivalent		B1	AM ANSIIS Sathscioud.com
		Use	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1	
			<i>dx dt dt</i> in the given answer		A1	3
		Obla			///	•
	(ii)	Subs	stitute t = 1 in $\frac{dy}{dx}$ and both parametric equations		M1	
		Obta	in $\frac{dy}{dx} = -1$ and coordinates (2, 5)		A1	
			dx e equation of tangent in any correct horizontal form e.g. x + y	<i>i</i> = 7	A1√	3
		olulo		y 1		U
	(iii)	Equa	the $\frac{dy}{dx}$ to zero and solve for t		M1	
		Obta	in answer t = 2 in answer y = 4		A1 A1	
		Shov	v by any method (but <u>not via $rac{d}{dt}(y')$) that this is a minimum</u>	i point	A1	4
7	(i)	Make Obta Use s	e relevant use of the $cos(A + B)$ formula e relevant use of cos2A and sin2A formulae in a correct expression in terms of cosA and sinA $sin^2A = 1 - cos^2A$ to obtain an expression in terms of cosA in given answer correctly		M1* M1* A1 M1(de _i A1	o*) 5
	(ii)	Repla	ace integrand by $\frac{1}{4}\cos 3x + \frac{3}{4}\cos x$, or equivalent		B1	
		Integ	rate, obtaining $\frac{1}{12}$ sin3x + $\frac{3}{4}$ sinx, or equivalent		B1 + B	1√
		Use	limits correctly in given anser		M1 A1	5

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

Ρ	age 1	Mark Scheme	Syllabus	Paper	2n	S. C.	37
		A AND AS LEVEL – JUNE 2004	9709/8719	3		ATTS C	.75
					B1	40)UN
	Show corr	rect sketch for $0 \le x < \frac{1}{2}\pi$			B1		
	Show corr	rect sketch for $\frac{1}{2}\pi < x < \frac{3}{2}\pi$ or $\frac{3}{2}\pi < x \le 2\pi$			B1		
	Show com	npletely correct sketch			B1	3	
	[SR: for a	graph with $y = 0$ when $x = 0$, π , 2π but otherwise of correct	shape, award	B1.]			
		State or imply non-modular inequality $(2x+1)^2 < x^2$ or con	rrosponding qu	Indratio			
	EITHER.		nesponding qu	auratic	-		
		equation or pair of linear equations $(2x + 1) = \pm x$			B1		
		Expand and make a reasonable solution attempt at a 3-te	erm quadratic, o	or solve two			
		linear equations			M1		
		Obtain critical values $x = -1$ and $x = -\frac{1}{3}$ only			A1		
		State answer $-1 < x < -\frac{1}{3}$			A1		
	OR:	Obtain the critical value $x = -1$ from a graphical method ,	or by inspectio	n, or by			
		solving a linear inequality or equation			B1		
		Obtain the critical value $x = -\frac{1}{3}$ (deduct B1 from B3 if extra	a values are ol	btained)	B2		
		State answer $-1 < x < -\frac{1}{3}$			B1	4	
		[Condone \leq for <; accept -0.33 for $-\frac{1}{3}$.]					

3	EITHER:	State $6y \frac{dy}{dx}$ as the derivative of $3y^2$	B1	
		State $\pm 4x \frac{dy}{dx} \pm 4y$ as the derivative of $-4xy$	B1	
		Equate attempted derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obtain answer 2	A1	
		[The M1 is conditional on at least one of the B marks being obtained. Allow any		
		combination of signs for the second B1.]		
	OR:	Obtain a correct expression for <i>y</i> in terms of <i>x</i>	B1	
		Differentiate using chain rule	M1	
		Obtain derivative in any correct form	A1	
		Substitute $x = 2$ and obtain answer 2 only	A1	4
		[The M1 is conditional on a reasonable attempt at solving the quadratic in y being ma	de.]	

Page 2	Mark Scheme	Syllabus	Paper	3m	-Math
	A AND AS LEVEL – JUNE 2004	9709/8719	3		Ally Cla
(i) State	or imply $2^{-x} = \frac{1}{x}$			B1	AMA ANSERT
	in 3-term quadratic e.g. $y^2 - y - 1 = 0$			B1	2
ODIZ	in S-term quadratic e.g. $y - y - 1 = 0$			Ы	2
(ii) Solv	a 3-term quadratic, obtaining 1 or 2 roots			M1	
Obta	in answer $y = (1 + \sqrt{5})/2$, or equivalent			A1	
Carr	v out correct method for solving an equation of the form 2^x	= a , where a	> 0, reaching	g	
a rat	o of logarithms			M1	
Obta	in answer $x = 0.694$ only			A1	4
i) Mak	e relevant use of formula for sin 2θ or cos 2θ			M1	
Mak	e relevant use of formula for $\cos 4\theta$			M1	
Com	plete proof of the given result			A1	3
(ii) Integ	rate and obtain $\frac{1}{8}(\theta - \frac{1}{4}\sin 4\theta)$ or equivalent			B1	
Use	imits correctly with an integral of the form $a\theta$ + $b\sin 4\theta$, whe	ere <i>ab</i> ≠ 0		M1	
Obta	in answer $\frac{1}{8}(\frac{1}{3}\pi + \frac{\sqrt{3}}{8})$, or exact equivalent			A1	3
Separate	variables and attempt to integrate			M1	
	ms $\frac{1}{3}\ln(y^3 + 1)$ and <i>x</i> , or equivalent		Δ	.1 + A1	
	a constant or use limits $x = 0$, $y = 1$ with a solution containing	na terms k In(
or equiva		.ge	<i>,</i> , , , , , , , , , , , , , , , , , ,	M1	
	y correct form of solution e.g. $\frac{1}{3}\ln(y^3 + 1) = x + \frac{1}{3}\ln 2$			A1√	
	e and obtain $y = (2e^{3x} - 1)^{\frac{1}{3}}$, or equivalent			A1	6
[f.t. is on				-	
	··,				
(i) Eval	tate cubic when $x = -1$ and $x = 0$			M1	
Justi	y given statement correctly			A1	2
[lf ca	culations are not given but justification uses correct statem	ients about si	gns, award E	81.]	
(ii) State	$x = \frac{2x^3 - 1}{x}$, or equivalent			B1	

(ii) State
$$x = \frac{2x^3 - 1}{3x^2 + 1}$$
, or equivalent B1
Rearrange this in the form $x^3 + x + 1 = 0$ (or *vice versa*) B1 **2**

Pag	ge 3	3	Mark Scheme	Syllabus	Paper	yn,	A AN
			A AND AS LEVEL – JUNE 2004	9709/8719	3	MNW, MYRE M1 A1	. Sclo
(iii)			erative formula correctly at least once			M1	°4,
			al answer –0.68			A1	
			icient iterations to justify its accuracy to 2d.p., or sh	now there is a sig	in chang	e in the	
	Ir	nterval (-(0.685, –0.675)			A1	3
(i)	E	EITHER:	•			M1	
			Obtain roots $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ and $\frac{1}{2} - i\frac{\sqrt{3}}{2}$ or equivalent			A1	
	C	OR:	Substitute $x + iy$ and solve for x or y			M1	
			Obtain correct roots			A1	2
(ii)) S	State that	the modulus of each root is equal to 1			B1√	
	S	State that	the arguments are $\frac{1}{3}\pi$ and $-\frac{1}{3}\pi$ respectively			B1√ + B1√	3
	[/	Accept de	egrees and $rac{5}{3}\pi$ instead of $-rac{1}{3}\pi$. Accept a modulus i	n the form $\sqrt{\frac{p}{p}}$ o	$r\sqrt{n}$ wh	nere	
				• -			l
	р tŀ	o, q, n are he implied	integers. An answer which only gives roots in moo d moduli and B1 for both the implied arguments.]	• -		is B1 for both	l
(iii	p tř i) E	o, q, <i>n</i> are he implied E <i>ITHER</i> :	integers. An answer which only gives roots in mod d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root	• -			I
(iii	p tř i) E	o, q, n are he implied	integers. An answer which only gives roots in moo d moduli and B1 for both the implied arguments.]	• -		is B1 for both	I
(iii	p tř i) E	o, q, <i>n</i> are he implied E <i>ITHER</i> :	integers. An answer which only gives roots in mod d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root	• -		is B1 for both B1 + B1	1
(iii	р tř і) Е	o, q, <i>n</i> are he implied E <i>ITHER</i> :	integers. An answer which only gives roots in mod d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$	• -		B1 for both B1 + B1 B1	I
(iii	р tř і) Е	o, q, n are he implied EITHER: OR:	integers. An answer which only gives roots in mod d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement	• -		B1 for both B1 + B1 B1 B1	2
	p tř	o, q, n are he implied EITHER: OR: OR:	integers. An answer which only gives roots in mod d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$	• -		B1 for both B1 + B1 B1 B1 B1 B1	
	p tr i) E	o, q, n are he implied EITHER: OR: OR: State or im	integers. An answer which only gives roots in mod d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement	• -		B1 for both B1 + B1 B1 B1 B1 B1	
	p tr i) E	o, q, n are he implied EITHER: OR: OR: State or im	integers. An answer which only gives roots in model d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement	dulus-argument f		B1 + B1 B1 + B1 B1 B1 B1 B1 B1	
	p tr i) E	o, q, n are he implied EITHER: OR: OR: State or im	integers. An answer which only gives roots in model d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement hply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$ Use any relevant method to obtain a constant	dulus-argument f		B1 for both B1 + B1 B1 B1 B1 B1 B1 M1	
	p tr i) E S E	o, q, n are he implied EITHER: OR: OR: State or im EITHER:	integers. An answer which only gives roots in model d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement hply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$ Use any relevant method to obtain a constant Obtain one of the values: $A = -1$, $B = 4$ and $C = -2$	dulus-argument f		B1 for both B1 + B1 B1 B1 B1 B1 B1 A1	
	p tr i) E S E	o, q, n are he implied EITHER: OR: OR: State or im EITHER:	integers. An answer which only gives roots in model d moduli and B1 for both the implied arguments.] Verify $z^3 = -1$ for each root State $z^3 + 1 = (z+1)(z^2 - z + 1)$ Justify the given statement Obtain $z^3 = z^2 - z$ Justify the given statement hply $f(x) = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x+1}$ Use any relevant method to obtain a constant Obtain one of the values: $A = -1$, $B = 4$ and $C = -2$ Obtain the remaining two values	dulus-argument f		B1 for both B1 + B1 B1 B1 B1 B1 B1 A1 A1	

				WWW. TRYTARIAS CIOUS
Page 4	Mark Scheme	Syllabus	Paper	- The second
	A AND AS LEVEL – JUNE 2004	9709/8719	3	Att ors
or (x	correct method to obtain the first two terms of the expan $(x + 1)^{-1}$		2	M1 SCIOUD.COM

Obtain any correct unsimplified expansion of the partial fractions up to the terms in x^3 $A1\sqrt{+}A1\sqrt{+}A1\sqrt{+}A1\sqrt{-}$ (deduct A1 for each incorrect expansion) A1 Obtain the given answer correctly

5

B1

1

[Binomial coefficients involving -1, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, are not sufficient for the M1 mark. The f.t. is on A, B, C.] [Apply a similar scheme to the alternative form of fractions in (i), awarding M1*A1 $\sqrt{A1}\sqrt{I}$ for the expansions, M1(dep*) for multiplying by Bx + C, and A1 for obtaining the given answer correctly.] [In the case of an attempt to expand $(x^2 + 7x - 6)(x-1)^{-1}(x-2)^{-1}(x+1)^{-1}$, give M1A1A1A1 for the expansions and A1 for multiplying out and obtaining the given answer correctly.] [Allow attempts to multiply out $(x-1)(x-2)(x+1)(-3+2x-\frac{3}{2}x^2+\frac{11}{4}x^3)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^3 , M1 for attempting to multiply out at least as far as terms in x^2 , A1 for a correct expansion up to terms in x^3 , and A1 for correctly obtaining the answer $x^2 + 7x - 6$ and also showing there is no term in x^3 .] [Allow the use of Maclaurin, giving M1A1 $\sqrt{1}$ for f(0) = -3 and f'(0) = 2, A1 $\sqrt{1}$ for f''(0) = -3, A1 $\sqrt{1}$ for f '''(0) = $\frac{33}{2}$, and A1 for obtaining the given answer correctly (f.t. is on A, B,C if used).]

10 (i) State x-coordinate of A is 1

(ii)	Use product or quotient rule	M1
	Obtain derivative in any correct form e.g. $-\frac{2\ln x}{x^3} + \frac{1}{x} \cdot \frac{1}{x^2}$	A1
	Equate derivative to zero and solve for ln x	M1
	Obtain $x = e^{\frac{1}{2}}$ or equivalent (accept 1.65)	A1

Obtain $y = \frac{1}{2e}$ or exact equivalent not involving ln A1 5

[SR: if the quotient rule is misused, with a 'reversed' numerator or x^2 instead of x^4 in the denominator, award M0A0 but allow the following M1A1A1.]

(iii) Attempt integration by parts, going the correct way M1 Obtain $-\frac{\ln x}{x} + \int \frac{1}{x} \cdot \frac{1}{x} dx$ or equivalent A1 Obtain indefinite integral $-\frac{\ln x}{x} - \frac{1}{x}$ A1 Use x-coordinate of A and e as limits, having integrated twice M1 Obtain exact answer $1 - \frac{2}{e}$, or equivalent 5 A1 [If *u* = ln *x* is used, apply an analogous scheme to the result of the substitution.]

				mm.n	Mu Asins sinscioud.com
	Page	e 5	Mark Scheme Syllabus Paper	"YM	Math ()
			A AND AS LEVEL – JUNE 2004 9709/8719 3		this is
11	(i)	EITHER:	: Obtain a vector in the plane e.g. \overrightarrow{PQ} = -3i + 4j +k	B1	·OUD.C
			Use scalar product to obtain a relevant equation in a, b, c e.g $3a + 4b + c =$	0 or	m
			6a - 2b + c = 0 or $3a + 2b + 2c = 0$	M1	
			State two correct equations in <i>a</i> , <i>b</i> , <i>c</i>	A1	
			Solve simultaneous equations to obtain one ratio e.g. <i>a</i> : <i>b</i>	M1	
			Obtain <i>a</i> : <i>b</i> : <i>c</i> = 2 : 3 : –6 or equivalent	A1	
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1	
			[The second M1 is also given if say <i>c</i> is given an arbitrary value and <i>a</i> or <i>b</i> is f	ound.	
			The following A1 is then given for finding the correct values of <i>a</i> and <i>b</i> .]		
		OR:	Substitute for <i>P</i> , <i>Q</i> , <i>R</i> in equation of plane and state 3 equations in <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>	B1	
			Eliminate one unknown, e.g. d, entirely	M1	
			Obtain 2 equations in 3 unknowns	A1	
			Solve to obtain one ratio e.g. <i>a</i> : <i>b</i>	M1	
			Obtain <i>a</i> : <i>b</i> : <i>c</i> = 2 : 3 : –6 or equivalent	A1	
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1	
			[The first M1 is also given if say <i>d</i> is given an arbitrary value and two equation	s in	
			two unknowns, e.g. a and b, are obtained. The following A1 is for two correct		
			equations. Solving to obtain one unknown earns the second M1 and the follow	ving	
			A1 is for finding the correct values of <i>a</i> and <i>b</i> .]		
		OR:	Obtain a vector in the plane e.g. \overrightarrow{QR} = 6 i –2 j + k	B1	
			Find a second vector in the plane and form correctly a 2-parameter equation for	or	
			the plane	M1	
			Obtain equation in any correct form e.g. $\mathbf{r} = \lambda(-3\mathbf{i} + 4\mathbf{j} + \mathbf{k}) + \mu(6\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + \mathbf{i} - \mathbf{k}$	k A1	
			State 3 equations in x, y, z, λ , and μ	A1	
			Eliminate λ and μ	M1	
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1	
		OR:	Obtain a vector in the plane e.g. \overrightarrow{PR} = 3 i + 2 j +2 k	B1	
			Obtain a second vector in the plane and calculate the vector product of the two		
			vectors, e.g. $(-3i + 4j + k) \times (3i + 2j + 2k)$	M1	
			Obtain 2 correct components of the product	A1	
			Obtain correct product e.g. 6i + 9j –18k or equivalent	A1	
			Substitute in $2x + 3y - 6z = d$ and find d or equivalent	M1	
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1	6
			· · · ·		

Page 6	Mark Scheme Syllabus Paper	ww.my	My Marins Sthis Cloud. Com
Page 6	Mark SchemeSyllabusPaperA AND AS LEVEL – JUNE 20049709/87193	.76	Ath the
(ii) <i>EITHER</i> :	State equation of <i>SN</i> is $\mathbf{r} = 3\mathbf{i} + 5\mathbf{j} - 6\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ or equivalent	B1√	°CIOUR
	Express x, y, z in terms of λ e.g. (3 + 2 λ , 5 +3 λ , -6 -6 λ)	B1√	tom
	Substitute in the equation of the plane and solve for λ	M1	
	Obtain \overrightarrow{ON} = i + 2 j , or equivalent	A1	
	Carry out method for finding SN	M1	
	Show that <i>SN</i> = 7 correctly	A1	
OR:	Letting $\overrightarrow{ON} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, obtain two equations in x, y, z by equating scalar		
	product of \overrightarrow{NS} with two of $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{RP}$ to zero B1	√+ B1√	
	Using the plane equation as third equation, solve for x , y , and z	M1	
	Obtain \overrightarrow{ON} = i +2 j , or equivalent	A1	
	Carry out method for finding SN	M1	
	Show that <i>SN</i> = 7 correctly	A1	
OR:	Use Cartesian formula or scalar product of \overrightarrow{PS} with a normal vector to find SN	M1	
	Obtain SN = 7	A1	
	State a unit normal $\hat{\mathbf{n}}$ to the plane	B1√	
	Use $\overrightarrow{ON} = \overrightarrow{OS} \pm 7\hat{\mathbf{n}}$	M1	
	Obtain an unsimplified expression e.g. 3i + 5j –6k $\pm 7(\frac{2}{7}i+\frac{3}{7}j-\frac{6}{7}k)$	A1√	
	Obtain \overrightarrow{ON} = i +2j, or equivalent, only	A1	6

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

						my	MANARAS IN SCIOUD CON
P	age 1	Mark Scher	ne		Syllabus Pa	ner '?	42 43
	ugo i	A AND AS LEVEL –		2004	9709 4		Ath As
4	(1)	$F = 13 \cos \alpha$	M1		For wood in a foress having	ntally	°C/OL
1	(i)	F = 13 cos α Frictional component is 12 N	A1	2	For resolving forces horizo	many	*0.00
	(ii)	$R = 1.1 \times 10 + 13 \sin \alpha$	M1	_	For resolving forces vertica	ally (3	~n.
				0	terms needed)		
	(iii)	Normal component is 16 N Coefficient of friction is 0.75	A1 B1 ft	2 1			
	()		Din	•			
2		$X = 100 + 250 \cos 70^{\circ}$	B1				
		$Y = 300 - 250 \sin 70^{\circ}$	B1				
		$R^2 = 185.5^2 + 65.1^2$	M1		For using $R^2 = X^2 + Y^2$		
		<i>R</i> = 197	A1 ft		ft only if one B1 is scored of	or if	
					the expressions for the candidate's <i>X</i> and <i>Y</i> are th	050	
					of the equilibrant	036	
		$\tan \alpha = 65.1/185.5$	M1		For using $\tan \alpha = Y/X$		
		<i>α</i> = 19.3	A1 ft	6	ft only if one B1 is scored		
					SR for sin/cos mix (max 4/	6)	
					$X = 100 + 250 \sin 70^{\circ}$ and Y = 300 - 250 \cos 70^{\circ}		
					(334.9 and 214.5)	B1	
					Method marks as scheme		
					<i>R</i> = 398 N and α = 32.6	A1	
			OR				
		316(.227766) or 107(.4528) or 299(.3343)	B1		Magnitude of the resultant two of the forces	of	
		71.565° or 37.2743 ° or	B1		Direction of the resultant of	f two	
		–51.7039 °			of the forces		
		$R^2 = 316.2^2 + 250^2 -$	M1		For using the cosine rule to	o find	
		$2 \times 316.2 \times 250 \cos 38.4^{\circ}$ $R^2 = 107.5^2 + 100^2 -$			R		
		2×107.5×100cos142.7°					
		$R^2 = 299.3^2 + 300^2 -$					
		2×299.3×300cos38.3°					
		R = 197 sin(71.6 - α) = 250sin38.4 ÷ 197	A1 ft M1		ft only if one B1 is scored For using the sine rule to fi	nd a	
		$\sin(71.0 - \alpha) = 230\sin(30.4 + 197)$ $\sin(37.3 - \alpha) = 100\sin(142.7 + 197)$					
		$sin(51.7 + \alpha) = 300sin38.3 \div 197$					
		$\alpha = 19.3^{\circ}$	A1 ft		ft only if one B1 is scored		
3	(i)	Distance AC is 70 m $7 \times 10 - 4 \times 15$	B1			ч I	
		7 × 10 - 4 × 15 Distance <i>AB</i> is 10 m	M1 A1	3	For using AB = AC - BC	1	
	(ii)	x(m)	M1	0	Graph consists of 3 connect	cted	
	(")	∧(iii) ∧			straight line segments with		
		70			order, positive, zero and		
					negative slopes. $x(t)$ is sing		
					valued and the graph conta the origin	ains	
			A1		1 st line segment appears		
		10			steeper than the 3 rd and th	e 3 rd	
		\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow $t(s)$			line segment does not term		
		10 15 30		~	on the <i>t</i> -axis	.	
			A1 ft	3	Values of t (10, 15 and 30)		
					x (70, 70, 10) shown, or ca read without ambiguity fror		
					scales		
					SR (max 1out of 3 marks)		
					For first 2 segments correct	t B1	

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709	4

					mm. B. M.
	Page 2	Mark Sche	eme		Syllabus Paper
		A AND AS LEVEL -	- JUNE 2	2004	9709 4
4	(i)	KE = 0.2g(0.7)	M1		Syllabus Paper 9709 4 For using KE = PE lost and PE lost = mgh
		Kinetic energy is 1.4 J	A1	2	lost = mgh
	(ii)	$R = 0.2 \times 10 \times \cos 16.3^{\circ}$ F = 0.288 N	B1 B1 ft		1.92 From 0.15 <i>R</i> (may be implied by subsequent exact value 0.72, 1.36 or 0.68)
		WD = 0.72 J or $a = 1.36$ or resultant downward force = 0.272 N	B1 ft		From 2.5 <i>F</i> or from $0.2a = 0.2 \times 10 \times (7/25) - F$ (may be implied by subsequent exact value 0.68)
		KE = $1.4 - 0.72$ or KE = $\frac{1}{2} 0.2(2 \times 1.36 \times 2.5)$ or 0.272×2.5	M1		For using KE = PE lost – WD or KE = $\frac{1}{2} mv^2$ and $v^2 = 2as$ or KE = resultant downward force $\times 2.5$
		Kinetic energy is 0.68 J	A1 ft	5	

5	(i)	$10t^2 - 0.25t^4$ (+ <i>C</i>)	M1 DM1		For integrating <i>v</i> For including constant of integration and attempting to evaluate it
		Expression is $10t^2 - 0.25t^4 - 36$	A1	3	
	(ii)	Displacement is 60 m	A1 ft	1	Dependent on both M marks in (i); ft if there is not more than one error in <i>s</i> (<i>t</i>)
	(iii)	$(t^2 - 36)(1 - 0.25t^2) = 0$	M1		For attempting to solve $s = 0$ (depends on both method marks in (i)) or $\int_0^t v dt = 36$ (but not -36) for t^2 by factors or formula method
		Roots of quadratic are 4, 36 $t = 2, 6$	A1 A1 ft	3	ft only from 3 term quadratic in t^2

6	(i)		M1		For using Newton's 2 nd law (3 terms needed)
		$DF - 400 = 1200 \times 0.5$ 20000 = 1000v	A1 M1		For using $P = Fv$
		Speed is 20 ms ⁻¹	A1	4	
	(ii)	20000/v - 400 = 0	M1		For using $P = Fv$ and Newton's 2^{nd} law with $a = 0$ and $F = 400$
		$v_{\rm max} = 50 \ {\rm ms}^{-1}$	A1	2	AG
	(iii)	$20000 = \frac{1500000}{\Lambda T}$ or	M1		For using $P = \frac{\Delta W}{\Delta T}$ or for using
		distance = 1500 000/400 = 3750 and time = 3750/50			'distance = work done/400' and 'time =distance/50'
		Time taken is 75 s	A1	2	

					www	14
Page 3	Mark Schei	me		Syllabus	Paper	Jun Mar
	A AND AS LEVEL -		4	9709	4	ath ns
						· · · · · · · · · · · · · · · · · · ·
7 (i)	$25 = 30t - 5t^{2} \Rightarrow t^{2} - 6t + 5 = 0 \Rightarrow$ (t - 1)(t - 5) = 0 or $v^{2} = 30^{2} - 500; t_{up} = (20 - 0)/10$ t = 1.5 or t = 2	M1	attempti	g 25 = $ut - \frac{1}{2}$ ng to solve fo ing $v^2 = u^2 - \frac{1}{2}$ - 0)/g	∕₂ <i>gt²</i> and or <i>t</i> 2 <i>g</i> (25) and	TRYMathscioud.com
	$t = 1, 5 \text{ or } t_{up} = 2$ Time = 5 - 1 = 4 s or Time = 2×2 = 4s or 1 < t < 5	A1 A1	3			
(ii)	$s_1 = 30t - 5t^2$ and $s_2 = 10t - 5t^2$ 30t - 10t = 25	M1 M1	and P_2	$g s = ut - \frac{1}{2}$ $g s_1 = s_2 + 2s_2$	-	
	<i>t</i> = 1.25	A1	attempti	ng to solve fo	or t	
	$v_1 = 30 - 10 \times 1.25$ or $v_2 = 10 - 10 \times 1.25$ or $v_1^2 = 30^2 - 2 \times 10(29.6875)$ or $v_2^2 = 10^2 - 2 \times 10(4.6875)$	M1	case) or substitut $v_1^2 = 30^2$	g $v = u - gt$ for calculatin ting into ${}^{2}-2 \times 10s_{1}on$ ng s ₂ and su	ng s₁ and r	
	Velocities 17.5 ms^{-1} and -2.5 ms^{-1}	A1	into v_2^2 :	$= 10^2 - 2 \times 10^2$)s ₂	
		OR	5			
(ii)	$v_1 = 30 - 10t, v_2 = 10 - 10t$ $\rightarrow v_1 - v_2 = 20$	M1	P_2 and ϵ	g v = $u - gt$ for eliminating t]
	$(30^2 - v_1^2) \div 20 =$	M1 A1		g $v^2 = u^2 - 2g$ and then $s_1 =$		
	$(30^{2} - v_{1}^{2}) \div 20 = (10^{2} - v_{2}^{2}) \div 20 + 25$ $v_{1} - v_{2} = 20, v_{1}^{2} - v_{2}^{2} = 300$	M1		ing simultane is in v_1 and v		
	Velocities are 17.5 ms ⁻¹ and $- 2.5 \text{ ms}^{-1}$		5		2	
(iii)	t _{up} = 3 3 – 1.25 Time is 1.75 s or 1.25 < <i>t</i> < 3	B1 M1 A1	For usin	g $t_{\rm up\ and\ above}$ =	= $t_{\rm up} - t_{\rm equal}$	
II		OR	- I			
(iii)	0 = 17.5 - 10t	M2		g 0 = u - gt nswer found		
	Time is 1.75 s or 1.25 < <i>t</i> < 3	A1	SR (max 0 = 17.5	x 1 out of 3 n + 10 <i>t</i>	narks) B1 ft	

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

	A AND AS LEVEL – JUNE 2004 Mechanics 2	9709/8719	5	5
	Mechanics 2			Clor
			Paper 5	44.0
	For taking moments about the edge of the platform	n	M1	
	$(75g \times 0.9 = 25g \times x + 10g \times 1.1)$ (3 term equation	ו)		
	Two terms correct (unsimplified)		A1	
	Completely correct (unsimplified)		A1	
	Distance <i>MC</i> = 3.16m		A1	4
	<u>NB:</u> If moments taken about other points, the force plank must be present at the edge of the platform	·	1 the	
(i)	Evaluates $\frac{2r\sin\alpha}{3\alpha} \times \cos\frac{\pi}{4}$		M1	
()	3α 4 Obtains given answer correctly		A1	2
			,,,,	-
(ii)	For taking moments about AB		M1	
	{ $(5 \times 10 + \frac{1}{4}\pi 5^2)x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3})x^- = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{2}{3}$	2 <u>0</u>)}		
	For the total area correct and the moment of the re			
	(unsimplified)		A1	
	For the moment of CDE correct (unsimplified)		A1	
	Distance is 7.01 cm		A1	4
	For applying Newton's 2 nd law and using $a = v \frac{dv}{dx}$		M1	
	$0.6v\frac{dv}{dr} = -\frac{3}{r^3}$		A1	
	<i>dx x</i> [°] For separating the variables and integrating		M1	
	$0.3v^2 = -\frac{3x^{-2}}{(-2)} $ (+C)		A1 ft	
	(-2) (ft omission of minus sign in line 2 only)			
	For using = 0 when $x = 10$		M1	
	$v^2 = \frac{5}{x^2} - \frac{1}{20}$ (aef)		A1 ft	
			731 IL	
	(ft wrong sign in line 4 only) Speed is $\frac{\sqrt{3}}{2}$ ms ⁻¹ (=0.866)		A1	7

				mm.n.	12
Page 2	2	Mark Scheme	Syllabus	Paper 47	Nat S
	A AND A	S LEVEL – JUNE 2004	9709/8719	5	The second
4 (i)	Distance of the rod fron [May be implied in mor	the hinge is $\frac{2.4}{2.5}(0.7)$ or 0 nent equation]).7cos16.26° (=0.672	2) B1	MA ASHS
	For taking moments about the hinge (3 term equation)		M1		
	0.672F = 68 x 1.2 + 750) x 2.4		A1 ft	
	Force is 2800 N			A1	4
(ii)	<i>X</i> = 784	(ft for 0.28 <i>F</i>)		B1 ft	
	For resolving vertically	(4 term equation)		M1	
	Y = 1870	(ft for 0.96 <i>F</i> –	818)	A1 ft	3

A1

5

SR: For use of 680 N for weight of the beam: (i) B1, M1, A0. In (ii) ft 680, so 3/3 possible.

5	(i)	For using EPE = $\frac{\lambda x^2}{2L}$	M1

EPE gain =
$$2\left(\frac{200x^2}{2\times 4}\right)$$
 (=50x²) A1

GPE loss = $10g (4 + x)$	B1
For using the principle of conservation of energy to form an equation	M1
containing EPE, GPE and KE terms	

$$[\frac{1}{2}10^{2} + 50x^{2} = 10g (4 + x)]$$

Given answer obtained correctly

ALTERNATIVE METHOD:

 $\mathsf{T} = \frac{200x}{4}$ Β1

$$100 - 2\left(\frac{200x}{4}\right) = 10v\frac{dv}{dx}$$
 M1

$$\frac{1}{2}v^2 = 10x - 5x^2$$
 (+C) A1
Use x = 0, ² = 8g M1

$$^{2} = 10(8 + 2x - x^{2})$$
 A1

(ii)For using = 0 and factorizing or using formula method for solvingM1
$$x = 4$$
 (only)A12

			www.	
	Page 3	Mark Scheme Syllabus	Paper Jun Ma	
		A AND AS LEVEL – JUNE 2004 9709/8719	5 Aths	s
6	(i)	2 = $VT \sin 35^\circ - 5T^2$ or 2 = 25 $\tan 35^\circ - \frac{25^2 \times 10}{2V^2 \cos^2 35^\circ}$	Paper 5 B1	Y.COM
		25 = <i>VT</i> cos35°	B1	
		For obtaining V^2 or T^2 in $AV^2 = B$ or $CT^2 = D$ form where A, B, C, D are		
		numerical	M1	
		[[(25tan35° – 2)cos²35°]V² = 3125 (aef) or		
		57 ² = 25tan35° – 2 (aef)]		
		V = 17.3 or T = 1.76	A1	
		T = 1.76 or V = 17.3 (ft VT = 30.519365)	B1 ft 5	
	(ii)	For using $\dot{y} = V \sin 35^\circ - gT$ (must be component of V for M1) M1	
		$\dot{y}_{\scriptscriptstyle M}$ (= 9.94 – 17.61 = -7.67) < 0 $ ightarrow$ moving downwards	A1 ft	
		(ft on V and T)		
		For using $_{M}^{2} = (V \cos 35^{\circ})^{2} + \dot{y}_{M}^{2}$	M1	
		$\binom{M^2}{M^2} = ((14.20)^2 + (-7.67)^2)$ or		
		For using the principle of conservation of energy		
		$(\frac{1}{2}m(v_M^2 - 17.3^2) = -mg \times 2)$		
		$_{\rm M} = 16.1 {\rm ms}^{-1}$	A1 4	
		M = 10.1 ms	AI 4	
	LINE	S 1 AND 2 ALTERNATIVE METHODS		
		$\left(\cdot v^2 \sin 70^\circ \right)$		
	<u>EITH</u>	<u>ER</u> Compare 25 with $\frac{1}{2}R\left(\frac{1}{2}\frac{v^2\sin 70^\circ}{g}\right)$	M1	
		$25 > 14.1 \rightarrow$ moving downwards	A1	
	<u>OR</u>	Compare 1.76 with time to greatest height $\left(\frac{V\sin 35^\circ}{g}\right)$	M1	

1.76 > 0.994 \rightarrow moving downwards A1

OR
$$\frac{dy}{dx} = \tan 35^\circ - \frac{g.10}{V^2 \cos^2 35^\circ} (= -0.54)$$
 used M1

As
$$tan\phi$$
 is negative \rightarrow moving downwards A1

			www.m	MM-NISTHS THSCIOLID.COM
	Page 4	Mark Scheme Syllabus	Paper 473	Mar I
		A AND AS LEVEL – JUNE 2004 9709/8719	5	The ne
7	(i)	$T\cos 60^{\circ} = 0.5 g$ (T = 10)	B1	-CIOUD.CC
		For applying Newton's 2 nd law horizontally and using $a = \frac{v^2}{r}$	M1	SU
		(must be a component of <i>T</i> for M1)		
		$T\sin 60^\circ = \frac{0.5v^2}{0.15\sin 60^\circ} \text{(for an equation in } V^2\text{)}$	A1	
		For substituting for <i>T</i>	M1	
		= 1.5	A1	5
	ALTE	RNATIVELY:		
		$a = \frac{v^2}{0.15\sin 60^\circ}$	B1	
		For applying Newton's 2 nd law perpendicular to the string	M1	
		0.5g cos30° = 0.5(acos60°)	A1	
		For substituting for a	M1	
		$(5\cos 30^{\circ} = 0.5^{2}/0.15\tan 60^{\circ})$ (for an equation in V ²)		
		= 1.5	A1	
	(ii)	(a) $T\sin 45^\circ = \frac{0.5(0.9)^2}{0.15\sin 45^\circ}$	B1	
		Tension is 5.4 N	B1	2
		(b) For resolving forces vertically	M1	
		5.4cos45° + <i>R</i> = 0.5g	A1 ft	
		Force is 1.18 N	A1	3

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

	rk Scheme EVEL – JUNE 2004	Syllabus Paper 9709/0390 6
(i) $\overline{x}_A = 139$ (138.75) $\sigma_A = 83.1$	B1 B1 2	Syllabus Paper 9709/0390 6 For the mean For the sd
(ii) team B smaller standard deviation	B1 B1 dep 2	Independent mark Need the idea of spread SR If team A has a smaller sd then award B1only for 'teamA, smaller sd'
2 (i) axes and labels points (3,0) (15,160) (20,320) (35,48 (60,640)	B1 (0) B1 B1 3	For correct uniform scales and labels on both axes, accept Frequency, %CF, Number of people, allow axes reversed, allow halves For 3 correct points All points correct and reasonable graph incl straight lines
(ii) accept 60 – 70 for straight lir 40 – 70 for curve	nes M1 A1 2	For subtracting from 640 can be implied For correct answer, reasonably compatible with graph
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 M1 36 ¹ /36 A1 A1 A1 31 31 3	For 36 in the uncancelled denominator somewhere, accept decimals eg 0.305 recurring or 0.306 etc For 3 correct probabilities All correct
ii) E(X) = $1 \times \frac{11}{36} + 2 \times \frac{9}{36} + 3 \times \frac{7}{36}$ $4 \times \frac{5}{36} + 5 \times \frac{3}{36} + 6 \times \frac{1}{36} =$		For calculation of $\sum xp$ where all probs < 1
(i) $z = \frac{350 - 450}{120}$ = -0.833 % small = 1 - 0.7975 = 0.202 20.25%	25 or A1 3	For standardising accept 120 or $\sqrt{120}$, no cc For correct <i>z</i> value, + or -, accept 0.83 For answer rounding to 0.202 or 0.203
(ii) $0.7975 \div 2 = 0.39875$ each $\Phi z_2 = 0.60125$ $z_2 = 0.257$ $x = 120 \times 0.257 + 450$ = 481	M1 M1dep M1 M1dep A1 5	For dividing their remainder by 2 For adding their above two probs together or subt from 1 For finding the <i>z</i> corresponding to their probability For converting to <i>x</i> from a <i>z</i> value For answer, rounding to 481

Page 2	Mark S A AND AS LEV			2004	Syllabus 9709/0390	Paper 6	Nymath Maths
				2004	0100/0000	0	· 15C/0,
5 (a) (i) $3 \times 5 \times 3 \times 2$ ${}_{3}C_{1} \times {}_{5}C_{1} \times = 90$		M1 A1	2	For multiplying For correct ans			W. My Mathscioud.
(ii) (3×5×2) + = 69	(3×3) + (5×2×3)	M1 M1 A1	3	For summing of S&M,S&D,M&D $3 \times 5 \times a + 3 \times 3$ for integers a,b, For correct ans) 3× b + 5× 3 ,c		
(b) ₁₄ C _{5 × 9} C _{5 × 4} C = 252252	C₄ or equivalent	M1 M1 A1	3	For using comb For multiplying groups For correct ans NB 14!/5!5!4! so correct answer	choices for wer	two or three	
6 (i)	9 Win	B1		For top branche 0.1)	es correct ((0.65, 0.9,	
0.65 1 st in 0.7	Lose 0.6 Win	В1		For bottom brar 0.8, 0.2)	nches corre	ect (0.35,	
0.35 0.8 1 st out	8 2 nd in 0.4 Lose	B1		For win/lose op 0.4)	tion after 2 ^r	nd in (0.6,	
0.2	2 nd out Lose	B1	4	For all labels in end of bottom b		al lose at	
(ii) 0.65×0.1+ 0.35 = 0.247	× 0.8×0.4 + 0.35×2	M1 M1		For evaluating ´ For 1 st out 2 nd ir lose	1 st in and lo ı lose, or 1 ^s	ose seen st out 2 nd out	•
		A1	3	For correct ans	wer		
(iii) $\frac{0.65 \times 0.1}{0.247}$		M1		For dividing the their answer to		l lose by	
= 0.263 (= 5	/19)	A1ft	2	For correct ans 0.65×0.1/their (on	

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/0390	6

Page 3	Mark Scheme A AND AS LEVEL – JUNE	Syllabus Paper 2004 9709/0390 6
P(1) = 15 (= P(2) = 15	$\begin{array}{c} 0.8)^{15} & (= 0.03518) \\ C_1 \times (0.2) \times (0.8)^{14} \\ 0.1319) \\ C_2 \times (0.2)^2 \times (0.8)^{13} \\ 0.2309) \\ = 0.398 \end{array} \qquad B1$	SyllabusPaper20049709/03906For correct numerical expression for P(0)For correct numerical expression for P(1) or P(2) For answer rounding to 0.398
(ii) 1 – (0.8)' 0.15 ≥ (0.4 n = 9		For an equality/inequality involving 0.8, <i>n</i> , 0.85 For solving attempt (could be trial and error or lg) For correct answer
P(<i>X</i> ≥ 29	$\begin{array}{l} \text{M1} \\ \text{M1} \\ \text{M2} \times 0.8 = 256 \\ \text{O)} \text{or } P(X < 350) \\ \frac{9.5 - 320}{\sqrt{256}} = 1 - \Phi(-1.906) \\ \text{M1} \\ \end{array}$	For both mean and variance correct For standardising , with or without cc, must have $$ on denom For use of continuity correction 289.5 or 290.5 For finding an area > 0.5 from their <i>z</i> For answer rounding to 0.972

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Sche		2004	Syllabus Paper
	A AND AS LEVEL -	JUNE	2004	9709/8719 7
1 (i) H ₀ : μ = 1 H ₁ : μ > 7	5 or <i>p</i> = 0.25 15 or <i>p</i> > 0.25	B1	1	Syllabus Paper 9709/8719 7 For H ₀ and H ₁ correct
(ii) Test stat $z = \pm \frac{1}{\sqrt{60}}$	$\frac{1.5 - 15}{21.5 - 15} = 1.938$	M1		For attempt at standardising with or without cc, must have $$ something with 60 in on the denom
OR test s $z = \pm \frac{\frac{22}{60}}{10}$	statistic $\frac{0^{-0.5}/60^{-15}/60}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$	A1		For 1.94 (1.938)
CV z = 1.6	645	M1		For comparing with 1.645 or 1.96 if 2-tailed,
In CR Cla	im justified	A1ft	4	signs consistent, or comparing areas to 5% For correct answer(ft only for correct one-tail test)
	0.5 + 2.9 + 3.1 = 9.5 $2^{2} + 0.25^{2} + 0.35^{2}$ (=0.275) 0.524	B1 M1 A1	3	9.5 as final answer For summing three squared deviations For correct answer
(ii) $z = \frac{9}{\sqrt{\frac{the}{t}}}$	$\frac{-9.5}{\frac{\text{eir var}}{4}} = -1.907$	M1		For standardising, no cc
or $z = \sqrt{4}$	4 <u>36-38</u> = −1.907 4 x <i>their</i> var) = 0.9717 = 0.972	M1 A1	3	For $\sqrt{\frac{their \text{ var}}{4}}$ or $\sqrt{4 \text{ x their var}}$ in denom - no 'mixed' methods. For correct answer
3 (i) E(2X-3Y) = -2	= 2E(X) –3E(Y) = 16 – 18	M1 A1	2	For multiplying by 2 and 3 resp and subt For correct answer
(ii) Var (2X-3 = 19.2 + 5 = 73.2	3Y) = 4Var (X) +9Var (Y) 54	B1 M1 M1 A1	4	For use of var (Y) = 6 For squaring 3 and 2 For adding variances (and nothing else) For correct final answer
4 (i) $\bar{x} = 375.3$ $\sigma^2_{n-1} = 8$	3.29	B1 M1 A1	3	For correct mean (3.s.f) For legit method involving <i>n</i> -1, can be implied For correct answer
(ii) <i>p</i> = 0.19 c	or equiv.	B1		For correct <i>p</i>
0.19 ± 2.055	$5 \times \sqrt{\frac{0.19 \times 0.81}{200}}$	M1		For correct form $p \pm z \times \sqrt{\frac{pq}{n}}$ either/both sides
		B1		For <i>z</i> = 2.054 or 2.055
0.133 < p	< 0.247	A1	4	For correct answer

Page 2 Mark Scheme		Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	7

			www.m. m
Page 2	Mark Scher – A AND AS LEVEL		Syllabus Paper 4 9709/8719 7
		JUNE 200	4 9703/8/13 1
5 (i) $\frac{c-54}{3.1/\sqrt{10}}$	= = -1.282	B1 M1	SyllabusPaper49709/87197For + or - 1.282 seenFor equality/inequality with their $z (\pm)$ (must have used tables), no $\sqrt{10}$ needed (c can be numerical)
c = 54 -	$-1.282 \times \frac{3.1}{\sqrt{10}} = 52.74$	A1 A1 4	For correct expression (c can be numerical, but signs must be consistent)
	$.74) = 1 - \Phi\left(\frac{52.74 - 51.5}{3.1/\sqrt{10}}\right) - \Phi(1.265) = 1 - 0.8971$	B1 M1 A1	For identifying the outcome for a type II error For standardising , no $\sqrt{10}$ needed For ± 1.265 (accept 1.26-1.27)
= 0).103 or 0.102	A1 4	For correct answer
6 (i) P(5) = <i>e</i> ⁻	$^{6} \times \frac{6^{5}}{5!} = 0.161$	M1 A1 2	For an attempted Poisson P(5) calculation, any mean For correct answer
(ii) $P(X \ge 2)$ = 1 - e^{-1}	= 1 -{P(0) + P(1)} $\frac{1.6}{(1+1.6)}$	B1 M1	For μ = 1.6, evaluated in a Poisson prob For 1 – P(0) – P(1) or 1 – P(0) – P(1) – P(2)
= 0.475		A1 3	For correct answer
(iii) P(1 then 4	$ 5) = \frac{(e^{-3} \times 3) \times (e^{-3} \times \frac{3^4}{4!})}{e^{5}}$	M1 M1	For multiplying P(1) by P(4) any (consistent) mean For dividing by P(5) any mean
= 0.156 or	$e^{-6} \times \frac{6^5}{5!}$ 5/32	A1 3	For correct answer
7 (i) $c \int_{0}^{5} t(25-t^2)$		M1	For equating to 1 and a sensible attempt to integrate
$c\left[\frac{25t^2}{2} - \frac{t^2}{2}\right]$	-0L	A1	For correct integration and correct limits
$c\left\lfloor \frac{62.5}{2} - \frac{6}{2} \right\rfloor$	$\left[\frac{625}{4}\right] = 1 \implies c = \frac{4}{625}$	A1 3	For given answer correctly obtained
(ii) $\int_{2}^{4} ct(25-t^{2})$ = $\frac{72}{125}$ (0	$dt = \left[\frac{25ct^2}{2} - \frac{ct^4}{4}\right]_2^4 = c[136] - c[46]$	M1* M1*dep	For attempting to integrate $f(t)$ between 2 and 4 (or attempt 2 and 4) For subtracting their value when t = 2 from their value when t = 4
$-\frac{1}{125}$ (0	0.010)	A1 3	
(iii) $\int_{0}^{5} ct^{2}(25 - t) dt = \frac{8}{3}$	t^{2})d $t = \left[\frac{4}{625} \times \frac{25t^{3}}{3} - \frac{4}{625} \times \frac{t^{5}}{5}\right]_{0}^{5}$	M1* A1 M1*dep A1 4	For attempting to integrate $tf(t)$, no limits needed For correct integrand can have c (or their c) For subtracting their value when t=0 from their value when t=5 For correct answer