www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/62 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			3, 2
Page 2	Mark Scheme	Syllabus	Par Mark
	GCE AS/A LEVEL – October/November 2012	9709	62 Pithon Ms

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

			.7. 2
Page 3	Mark Scheme	Syllabus	Pap That Asing
	GCE AS/A LEVEL – October/November 2012	9709	62 PHASE PASS

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\frac{1}{2} \) marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1This is deducted from A or B marks in the case of premature approximation.

			23. 32
Page 4	Mark Scheme	Syllabus	Par The Tark
	GCE AS/A LEVEL – October/November 2012	9709	62 PH/S 198
			0.0

1	(i) $P(A \text{ Later}) = 0.5 \times 0.2 = 0.1$	B1	[1]	
	(ii) $P(L \text{ given } I) = (0.2 \times 0.1)/(0.5 \times 0.8 + 0.3 \times 0.6 + 0.2 \times 0.1)$	B1		0.2 × 0.1 seen on its own as num or denom of a fraction
		M1		Attempt at P(<i>I</i>) summing 2 or 3 2-factor prods, seen anywhere
	=0.02/0.6	A1		Correct unsimplified P(I) as num or denom of a fraction
	= 0.0333 (1/30)	A1	[4]	Correct answer accept 0.033
2	(i) $z_1 = \frac{12 - 6.4}{5.2} = 1.077$	M1		Standardising, can be all in thousands, no mix, no cc no sq rt no sq
	$z_2 = \frac{10 - 6.4}{5.2} = 0.692$	M1		$\Phi_2 - \Phi_1$, Φ_2 must be $> \Phi_1$
	$\Phi(z_1) - \Phi(z_2) = 0.8593 - 0.7556$ = 0.104	A1	[3]	Correct answer
	(ii) $P(loss) = P(z < \frac{0 - 6.4}{5.2}) = P(z < -1.231)$ = 1 - 0.8909	M1		Standardising using $x = 0$, accept $\frac{0.5 - 6.4}{5.2}$
	= 0.109	A1		Correct prob
	$P(1) = (0.1091)^{1}(0.8909)^{3} \times 4C1$	M1		Binomial term ${}_{4}C_{x}p^{x}(1-p)^{4-x}$ any $p \ x \neq 0$
	= 0.309 or 0.308	A1	[4]	Correct answer
3	(i) median in 15–20 mins,	B1		
	UQ in 25–40 mins	B1	[2]	
	(ii) fd 1.9, 2.4, 5.6, 4.4, 1.2, 0.65 or Scaled freq 9.5, 12, 28, 22, 6, 3.25	M1		Attempt at fd or scaled freq [f/(attempt at cw)]
		A1		Correct heights seen on diagram
		B1		Correct bar widths visually no gaps
	0 10 20 30 40 50 60 t/Time/minutes	B1	[4]	Labels (time/mins and fd or freq per 5 min) and correct bar ends

			nun n
Page 5	Mark Scheme	Syllabus	Pap
	GCE AS/A LEVEL – October/November 2012	9709	62
			50 /

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			[2]		$+32.5 \times 18 + 50 \times 13)/112 = 2465/112$	(iii)
$s = 0.993 \\ \mu = 3.97$ M1 (ii) $p = 0.85 \\ \mu = 200 \times 0.85 = 170, \\ var = 200 \times 0.85 \times 0.15 = 25.5 \\ P(at least 160) = p\left(z > \frac{159.5 - 170}{\sqrt{25.5}}\right) = P(z > -2.079) = 0.981 M1 Solve the set of the s$		± 1.036 or ± 1.037 seen		B1	(i) $z = 1.036$ or 1.037	4 (i)
$s = 0.993 \\ \mu = 3.97$ (ii) $p = 0.85 \\ \mu = 200 \times 0.85 = 170, \\ var = 200 \times 0.85 \times 0.15 = 25.5 \\ P(at least 160) = p(z > \frac{159.5 - 170}{\sqrt{25.5}})$ $= P(z > -2.079) \\ = 0.981$ (b) (i) ${}_{12}P_8 = 19.958,400$ (ii) ${}_{12}P_8 = 19.958,400 - 3326400 \\ Not tog: 1995,400 - 3326400 \\ = 16,632,000 (16,600,000) \\ OR \\ Mat end then not F in 10 \times 10P6 \times 2-3024000 ways 10 \times 9 \times 10P6 = 13608000 ways 10 \times 9 \times 10P6 = 13608000 ways 10 \times 10 \times 9 \times 10P6 = 13608000 ways 10 \times 10 \times 9 \times 10P6 = 13608000 ways 10 \times 10 $		$\frac{5-4\sigma}{2}$ seen or $\frac{5-\mu}{2}$ oe		B1	$1.036 = \frac{5 - 4s}{1.036}$	
$\mu = 3.97$ (ii) $p = 0.85$ $\mu = 200 \times 0.85 = 170,$ $var = 200 \times 0.85 \times 0.15 = 25.5$ $P(at least 160) = P\left(z > \frac{159.5 - 170}{\sqrt{25.5}}\right) = 0.981 (ii) p = 0.85 p(z) = -2.079 p(z) = -$	ng	σ $\mu/4$ One variable and sensible solving		M1		
(ii) $p = 0.85$ $\mu = 200 \times 0.85 = 170$, $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 = 20.85$ $\mu = 200 \times 0.85 \times 0.15$ $\mu = 200 \times 0.85$ $\mu = 200 \times 0.85 \times 0.15$ $\mu = 200 \times 0.85$ $\mu =$		attempt z-value not nec				
(ii) $p = 0.85$ $\mu = 200 \times 0.85 = 170$, $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 = 25.5$ $\mu = 200 \times 0.85 \times 0.15 \times$		Both answers correct	F 4 3	A1	$\mu = 3.97$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			[4]			
$\begin{array}{c} \text{var} = 200 \times 0.85 \times 0.15 = 25.5 \\ \text{P(at least } 160) = p \left(z > \frac{159.5 - 170}{\sqrt{25.5}}\right) \\ = P(z > -2.079) \\ = 0.981 \\ \\ \textbf{M1} \\ = 0.981 \\ \\ \textbf{M2} \\ \textbf{M3} \\ = 0.981 \\ \\ \textbf{M3} \\ \textbf{M4} \\ \textbf{M5} \\ \textbf{M5} \\ \textbf{M5} \\ \textbf{M6} \\ \textbf{M7} \\ \textbf{M7} \\ \textbf{M7} \\ \textbf{M8} \\ \textbf{M7} \\ \textbf{M7} \\ \textbf{M8} \\ \textbf{M8} \\ \textbf{M8} \\ \textbf{M8} \\ \textbf{M8} \\ \textbf{M9} \\ M$					· / •	(ii)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 ×	* *		B1	$\mu = 200 \times 0.85 = 170,$	
Total = 1000 P $z > \frac{1}{\sqrt{25.5}}$ M1 continuity correction 159.5 or 16 $z > 0.981$ M1 correct area (> 0.5) must have us 200 correct value $z > 0.981$ Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option Summing two 2-factor products, Any correct option unsimplified Correct final answer Summing two 2-factor products, Any correct option Summing two 2-factor products, Any correct opt	ive	Standardising, sq rt and must have		M1		
Solution	60.5	continuity correction 159.5 or 160.		M1	P(at least 160) = $P\left(z > \frac{159.5 - 170}{\sqrt{25.5}}\right)$	
	ised	correct area (> 0.5) must have used 200		M1	= P(z > -2.079)	
Boys out: $10C3 \times 9C3 = 10080$ ways Total = 10920 ways (10900) B1 A1 Any correct option unsimplified Correct final answer (b) (i) $_{12}P_8 = 19,958,400$ B1 [1] or $20,000,000$ (ii) together: $_{11}P_7 = 1663200 \times 2 = 3326400$ Not tog: $19958400 - 3326400$ B1 M1 $_{11}P_7$ seen 19958400 or their (i) – their togothers to their togothers to the second content of the			[5]	A1	= 0.981	
(ii) together: $_{11}P_7 = 1663200 \times 2 = 3326400$ B1 $_{11}P_7$ seen Not tog: $19958400 - 3326400$ M1 19958400 or their (i) – their togo (must be >0) $=16,632,000 (16,600,000)$ A1 [3] correct final answer OR M1 summing options for M at end a not at end in $10 \times 9 \times 10P6 = 13608000$ B1 summing options for M at end a not at end one correct option ways Total = $16,632,000$ ways A1 correct final answer (iii) $8! \times 5 = 201600$ ways B1 $8!$ seen mult by equivalent of interpretation.		summing two 2-factor products, C Any correct option unsimplified Correct final answer	[3]	B1	Boys out: $10C3 \times 9C3 = 10080$ ways	5(a)
Not tog: $19958400 - 3326400$ $=16,632,000 (16,600,000)$ OR M at end then not F in $10 \times 10P6 \times 2=3024000$ ways Total = $16,632,000$ ways Total = $16,632,000$ ways (iii) $8! \times 5 = 201600$ ways M1 19958400 or their (i) – their togo (must be >0) correct final answer M1 summing options for M at end a not at end one correct option A1 Correct final answer 8! seen mult by equivalent of interpretations.		or 20,000,000	[1]	B1	(b) (i) $_{12}P_8 = 19,958,400$	(b)(i)
$=16,632,000 \ (16,600,000)$ OR M at end then not F in $10 \times 10P6 \times$ $2=3024000 \text{ ways}$ not at end in $10 \times 9 \times 10P6 = 13608000$ ways $Total = 16,632,000 \text{ ways}$ A1 $=16,632,000 \text{ ways}$ A1 $=16,632,000 \text{ ways}$ Summing options for M at end a not at end one correct option $= 16,632,000 \text{ ways}$ A1 $= 16,632,000 \text{ ways}$ Seen mult by equivalent of integration answer	ether	19958400 or their (i) - their togeth				(ii)
M at end then not F in $10 \times 10P6 \times$ 2=3024000 ways not at end in $10 \times 9 \times 10P6 = 13608000$ B1 summing options for M at end a not at end one correct option ways Total = $16,632,000$ ways A1 correct final answer (iii) $8! \times 5 = 201600$ ways B1 8! seen mult by equivalent of integration in the second of the			[3]	A1	=16,632,000 (16,600,000)	
	and M	summing ontions for M at end and		M1		
ways $Total = 16,632,000 \text{ ways}$ A1 correct final answer (iii) $8! \times 5 = 201600 \text{ ways}$ B1 8! seen mult by equivalent of integral answer		not at end			2=3024000 ways	
Total = $16,632,000$ ways A1 correct final answer (iii) $8! \times 5 = 201600$ ways B1 $8!$ seen mult by equivalent of integration of the second secon		one correct option		Bl		
		correct final answer		A1		
	teger≥	8! seen mult by equivalent of integ		B1	(iii) $8! \times 5 = 201600$ ways	(iii)
M1 Mult by 5	8400	Correct answer SR $8! \times 5! = 483840$	[3]			

			www. m. m.
Page 6	Mark Scheme	Syllabus	Pap 1/2 ONE
	GCE AS/A LEVEL – October/November 2012	9709	62 Phys. 75

6 (i) $P(9) = P(1,4,4) \times 3 + P(2,3,4)$	$(4) \times 6 + P(3,3,3)$ M1 M1		Listing at least 2 different options Multiplying P(4,3,2) by 6 or P(1,4,4) by 3
= 10/64 (5/32) (0.156) AG	A1	[3]	Correct answer must see numerical justification
(ii) probs 1/64, 3/64, 6/64, 10/			3 or more additional correct probs
12/64, 10/64, 6/64, 3/64,	1/64. B1		5 or more correct
	B1	[3]	All correct
(iii) $P(S) = 6/64(3/32)$	M1		An attempt at P(S) 4,4,1 or 4,2,2
	A1		Correct P(S)
$P(R \cap S) = 3/64, \neq 15/102$	4 ie $P(R) \times P(S)$ B1		Correct P($R \cap S$) in either intersection
OR $P(R S) = \frac{3/64}{6/64} = 1/2, \neq 1$	10/64 ie P(R)		or cond prob cases comparing their $P(R \cap S)$ with their $P(R) \times P(S)$
			or their $P(R S)$ with their $P(R)$ need
Not independent	A1ft	[5]	numerical vals correct conclusion ft wrong $P(S)$ or $P(R \cap S)$ only