

MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/61

Paper 61, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

			mm.n.
Page 2	Mark Scheme: Teachers' version	Syllabus	Papth
	GCE A/AS LEVEL – October/November 2009	9709	61

Cloud.com

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

			mm. m.
Page 3	Mark Scheme: Teachers' version	Syllabus	Pap the way
	GCE A/AS LEVEL – October/November 2009	9709	61 41/20 15
The followin	SCIOUD.COM		

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{2}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

							mm
	Page 4	Mark Schen	ne: Teac	hers'	version	Syllabus	Paphyna
		GCE A/AS LEVEL	. – Octoł	ber/N	ovember 2009	9709	61
	00 1 (2.01			NO 1 1	
1	20p = 1.6	p = 0.08	MI A1		Correct <i>p</i> can be i	mplied	
	P(X > 2) = 20	$= 1 - \{(0.92)^{20}\}$				r	
	$+{}^{20}C_2$	$(0.08)(0.92)^{19}$ $(0.08)^2 (0.92)^{18}$	M1		Bin expression inv	volving $p^{x}(1-p)^{2t}$	$1-x^{20}C_x$ any p
	= 1 - (0.1)	887 + 0.3281 + 0.2711)	M1		Subtracting 2 or 3 binomial probs from 1, one of which is $P(0)$		
	= 0.212		A1	[5]	Correct answer		
2	(i) -0.16	6 - p + 0.16 + 2q + 0.66 = 1.0	05 M1		Attempt at $\Sigma px = 1$.05 no dividing	
	-p +	2q = 0.39	A1		Correct simplified	equation	
	p+q q=0	= 0.42 27	B1		Accept $p = 0.42 - $	<i>q</i> oe	
	p = 0	.15	A1	[4]	Both answers corre	ect	
	(ii) Var (+	$X) = 4 \times 0.08 + p + 0.16 + 4$ 1.98 - (1.05) ²	<i>q</i> M1		Subst in $\Sigma px^2 - me$	ean ² formula, mea	n ² subt
	= 2.5	9	A1	[2]	Correct answer	e and < 1	
3	(i) P(85	< <i>x</i> < 100)					
	= 0.5	$-\mathbf{P}\left(z < \left(\frac{85-100}{7}\right)\right)$	B1		$\pm \frac{85-100}{7}$ seen of	e or ± 2.14	
	= 0.5	-P(z < -2.143)	M1		$\Phi - 0.5$		
	= 0.5	$-(1-\Phi(2.143))$					
	= 0.9 = 0.4	84	A1	[3]	Correct answer rou	unding to	
1	(ii) <i>z</i> = Φ	$p^{-1}(0.67) = 0.44$	B1		± 0.44 seen		
	0.44	$=\frac{a-100}{7}$	M1		Standardising, with	h or without sq rt,	no cc, no 7^2
	103.1	min (103) = upper limit	A1		Correct upper or lo obtained from $z =$	ower boundary all 0.412	ow even if
	96.9	min = lower limit	A1	[4]	Correct other boun	ıdary	

Page 5	Mark Scheme: Teachers' version	Syllabus	Pap
	GCE A/AS LEVEL – October/November 2009	9709	61

							www.m.	
	Page 5	Mark Scheme:	Teac	hers'	version	Syllabus	Papyna	
		GCE A/AS LEVEL -	Uctor	ber/N	ovember 2009	9709	61	
4	(i) 67		B1	[1]				
	(ii) $LQ = 64$ Med = 73 UQ = 90		M1		Attempt to find all	3 quartiles can be	implied	
			B1		Correct end whisk through box, must	ers (not dots or bo look accurate	xes), not	
			B1		Correct median lin	e in box must lool	k accurate	
30	40 50 6	50 70 80 90 100	B1		Correct box ends r	Correct box ends must look accurate		
50	10 20 0	books	B1	[5]	Correct uniform so label 'books' oe ca	cale from at least 3 in be seen in title of	3 to 99, and or scale	
	(iii) books are standard d number of	fatter/ wider, or leviation /IQ range of the f books per shelf is less	B1	[1]	Any sensible com s.d / IQ range not r	nent about width o nean/median.	of books or	
5	(a) (i) $1 \times 5 = 60$	$\times 4 \times 3$ or ${}^{5}C_{3} \times 3!$ or ${}^{5}P_{3}$	M1 A1	[2]	One of these oe Correct final answ	er		
	(ii) 1×6	³ = 216	M1 A1	[2]	Seeing 6 ³ Correct answer			
	(b) (i) 5G 0 4G 1	$B = {}^{8}C_{5} = 56 (\times {}^{6}C_{0})$ $B = {}^{8}C_{4} \times {}^{6}C_{1} = 420$ $B = {}^{8}C_{4} \times {}^{6}C_{0} = 840$	M1 B1		Σ 2 or three 2-factor Any correct option	or products, C or I unsimplified)	
	total	$B = C_3 \times C_2 = 840$ = 1316	A1 A1	[4]	A second correct of Correct answer	ption unsimplified	1	
	(ii) ¹¹ C ₂	$+ {}^{11}C_5$	M1		Adding two single	perm or comb op	tions	
	= 55 = 517	+ 462 7	B1 A1		One correct unsim Correct answer	plified option		
	OR cousins in $+ P(5B, 0G)$	P(3B, 2G) + P(4B, 1G) + cousins out P(3B, 2G)	M1		Σ 5 or more 2-fact	or perm or comb t	erms	
+ P(2B, 3G) + P(1B, 4G) + P(0B, 5G) = 28 + 24 + 3 + 28 + 168 + 210 + 56		B1		3 or more correct u	insimplified optio	ns		
	= 517		A1	[3]	Correct answer			

Mark Scheme: Teachers' version	Syllabus	
GCE A/AS LEVEL – October/November 2009	9709	

						MM. C.
Page 6	Mark Scheme	: Teac	hers'	version	Syllabus	Papyn
	GCE A/AS LEVEL -	Octob	ber/N	ovember 2009	9709	61
				Γ		
(i) $\frac{{}^{4}C_{2} \times {}^{7}C_{1}}{{}^{11}C}$	L = 0.255	M1		Using 2 combs mu	Ilt for numerator a	nd 1 comb for
C_3		M1		denom Correct denom or	num unsimplified	
		A1		Correct answer	I I I	
$OR \xrightarrow{4} \times$	$\frac{3}{2} \times \frac{7}{2} \times 3$	M1		Multiplying 3 corr	ect probs	
11	10 9	M1		Mult by 3 or Σ the	ir 3 options	
= 0.255 (14/55) (42/165)	A1	[3]	Correct answer	Ĩ	
(ii) $P(3^{rd} \text{ is on} + P(0) + P($	range) = P(P, P, O) P, O, O) + P(O, P, O) O, O, O) $\times \frac{7}{9} + \frac{4}{11} \times \frac{7}{10} \times \frac{6}{9}$	M1		Summing four 3-fa replacement	actor options with	or without
$+\frac{7}{11}$	$\times \frac{4}{10} \times \frac{6}{9} + \frac{7}{11} \times \frac{6}{10} \times \frac{5}{9}$	A1		At least 3 correct u	unsimplified option	ns
$= \left\lfloor \frac{14}{165} + \right.$ $= 7/11 (0)$ OR using	$\frac{28}{165} + \frac{28}{165} + \frac{7}{33}$.636 g a tree diagram	A1	[3]	Correct answer. A stated with no wor	ward B3 if the cor king.	rect answer is
(iii) $P(P O) =$	$=\frac{P(P \cap O)}{P(O)}$	M1		Substituting in con 3-factor product in	nd prob formula w num, and denom	ith at least one their (ii) or
$=\frac{P(P,P,P)}{P(P,P)}$	$\frac{P(O) + P(P, O, O)}{P(O)}$	M1		Summing exactly 2	2 three-factor proc	lucts in num
$=\frac{28/110}{7/11}$	$\frac{1}{2} = \frac{28}{70} = \frac{4}{10} = 0.4$	A1	[3]	Correct answer		
(iv) $\mu = 121 \times$	$\frac{4}{11} = 44$	B1		44 and 28 or 5.29	seen	
$\sigma^2 = 121$	$\times \frac{4}{11} \times \frac{7}{11} = 28$	M1		Standardising, with on denom	h or without cc, m	ust have sq rt
P(X < 39)	$) = \Phi\left(\frac{38.5 - 44}{\sqrt{28}}\right)$	M1		cc either 39.5 or 38	8.5	
$= \Phi(-1.0)$	39)	M1		Correct area "1 –	Φ" seen	
-1 - 0.83	500	A 1	[5]			