

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/51 October/November 2016

www.mymathscloud.com

Paper 5 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			MMM. D.
Page 2	Mark Scheme	Syllabus	P. m
	Cambridge International A Level – October/November 2016	9709	51 %

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓th implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

	Mark Scheme Syllabus P.U.M. Cambridge International A Level – October/November 2016 9709 51 ollowing abbreviations may be used in a mark scheme or used on the scripts: OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent					
Page 3	Mark Scheme Syllabus P. Mark					
	Cambridge International A Level – October/November 2016 9709 51					
The following abbreviations may be used in a mark scheme or used on the scripts:						
AEF/0	OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent					
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)					
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)					
CWO	Correct Working Only – often written by a 'fortuitous' answer					
ISW	Ignore Subsequent Working					
SOI	Seen or implied					
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case					

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme Syllabus P. Mark				
Cambridge International A Level – October/November 2016 9709 51					
	T = 12 N	B1		Www.mymath math vember 2016Syllabus 9709P. Math 51T = 12(2L-L)/L $Accn = v^2/r$	
	$T = 0.3 x 4^2/r$	M1		$Accn = v^2/r$	
	12 = 4.8/(2L)	A1√ [^]		ft candidates expression for T	
	L = 0.2	A1	4		
	$CoM(large) = 0.6/(\pi/2)$ or $CoM(small) = 0.3/(\pi/2)$	B1			
	$(\pi \ge 0.6 + \pi \ge 0.3)D = \pi \ge 0.6(1.2/\pi) - \pi \ge 0.3(0.6/\pi)$	M1		OR $(2+1)D = 2(1.2/\pi) - 1(0.6/\pi)$ Moments about ACB	
	$D = 0.191 \mathrm{m}$ AG	A1	3		
	$(\pi \ge 0.6 + \pi \ge 0.3)H = \pi \ge 0.6 \ge 0.6 + \pi \ge 0.3 \ge 0.9$	M1		OR $3H = 2 \ge 0.6 + 1 \ge 0.9$ Moments about A	
	H = 0.7	A1			
	$\tan\theta = 0.191/0.7$	M1			
	$\theta = 15.3^{\circ}$	A1	4		
	$0.25v dv/dx = 2 + 0.3x^2$	M1			
	$v dv/dx = 1.2 x^2 + 8 AG$	A1	2		
(ii)	$\int v \mathrm{d}v = \int (1.2x^2 + 8) \mathrm{d}x$	M1			
	$v^2/2 = 0.4x^3 + 8x (+c)$	A1		Allow $c = 0$ without working	
	v = 5.17	A1	3		
(iii)	$0.25v dv/dx = 0.3x^2 + 1.5 - 0.75x$	M1			
	Force is $0.5 + 0.75x$ N towards O	A1	2		
	$(0.9a + 0.9a/2)Y = 0.9a \ge 0.45 + 0.45a \ge 0.9 \ge 2/3$	M1		$1.5Y = 1 \ge 0.45 + 0.5 \ge 0.6$ Moments about AD	
	Y = 0.5 m	A1	2		
(ii)	$(0.9a + 0.9a/2)X = 0.9a \ge a/2 + 0.45a \ge (a + a/3)$	M1		$1.5X = 1 \ge a/2 + 0.5 \ge 4a/3$	
	X = 7a/9	A1	2		
(iii)	$0.5 \ge 6 = (a - 7a/9) \ge 18$	M1 A1√ [^]		Ft [<i>Y</i> i and (<i>a–X</i> ii)]	
	a = 0.75	A1	3		

Page 5	Mark Sche	Mark Scheme		
	Cambridge International A Level -		vember 2016 9709 51	
5 (i)	$\theta(=tan^{-1}0.45/0.6=36.87)=36.9^{\circ}$	B1		WWW. MWW.
	$0.4v^2/0.6 = 5\cos\theta$	M1		
	$v = 2.45 \mathrm{ms}^{-1}$	A1	3	Or $\sqrt{6}$
(ii)	$T\sin\theta = 0.4g$	M1		
	$T = 6.67 \mathrm{N}$	A1		Accept 0.66, $6\frac{2}{3}$, 20/3
	$0.4\omega^2 \ge 0.6 = 6.67 \cos\theta$	M1		
	$ω = 4.71 \text{ rad } s^{-1}$ A1 4 Accept 4.72 rad s^{-1}		Accept 4.72 rad s^{-1}	
6 (i)	$EE = 8(0.9\pi - 1.2)^2 / (2 \times 1.2)$	B1		Initial EE = 8.83 J
	$8.83 = 0.2g \ge 0.9 + 0.2v^2/2 + 8(0.9\pi/2 - 1.2)^2/(2 \ge 1.2)$	M1 A1		
	$v = 8.29 \text{ ms}^{-1}$	A1	4	
(ii)	$\theta = 1.2/0.9 = 4/3 \text{ rad} (=76.4^{\circ})$	B1		
	$8.83 = 0.2g \ge 0.9 + 0.2g \ge 0.9\cos\theta + 0.2v^2/2$	M1		$0.2 \ge 8.29^2/2 = 0.2g \ge 0.9\cos\theta + 0.2v^2/2$
	$v = 8.13 \text{ ms}^{-1}$	A1	3	
7 (i)	$a = 14k - 0.8(1 + k^2)$ and $2a = 42k - 7.2(1 + k^2)$	M1		Creates 2 simultaneous equations
	$42k - 7.2(1 + k^2) = 2[14k - 0.8(1 + k^2)]$	M1		Creates a single equation in <i>k</i>
	k = 1/2 and 2	B1		Both values
	$\theta = \tan^{-1}k$	M1		With 1 of the candidates value of <i>k</i>
	$\theta = 63.435$ AG	A1	5	
(ii)	$t = 14/(35\cos 63.435)$	M1		
	$t (= 0.89442) = 0.894 \mathrm{s}$	A1	2	

				m	w.n. M			
Page 6				Syllabus	P. May Tary			
	Cambridge International A Level – October/November 2016 9709 51							
(iii)	$V_v = 35\sin 63.4 - g[42/(35\cos 63.4)]$ tan\alpha = 4.495/(35\cos 63.4)	M1		$V_{v} = 4.495$	W. M. M. Marins 51 51 Cloud. com			
	$\alpha = 15.9^{\circ}$ above the horizontal	A1		Accept 16(.0)°				
	$V^2 = 4.495^2 + (35\cos 63.4)^2$	M1						
	$V = 16.3 \text{ m} \text{s}^{-1}$	A1	4					
	OR							
	2a = 48 $V^2 = 35^2 - 2g \ge 48$	M1		$42 \ge 2 - 7.2(1 + 2^2)$				
	$V = 16.3 \text{ ms}^{-1}$	A1						
	$\cos \alpha = 35\cos 63.435/16.3$	M1						
	$\alpha = 15.9^{\circ}$	A1	4					