

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 4
October/November 2019
MARK SCHEME
Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

October/Novembe Mannaths Cloud Com

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 11

PUBLISHED

Mark Scheme Notes

October/Novembe W. Mynnains Cloud. Com The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

© UCLES 2019 Page 3 of 11

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied

in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2019 Page 4 of 11

9709/43	Cambridge International AS/A Level – Mark PUBLISHED	Scheme	October/Novembe myn	Matheclond com
Question	Answer	Marks	Guidance	This Co.
1	$F=\mu\times500g$	B1	Use of $F=\mu R$	AND. COM
	$[2500=\mu \times 500g]$	M1	Resolving horizontally	
	μ =0.5	A1		
		3		

Question	Answer		Marks	Guidance
2	PE gain = $150000g \times 500\sin\alpha$	(=75000000gsinα)	B1	Correct expression for PE gain
	$\frac{1}{2} \times 150000 \times 45^2 - \frac{1}{2} \times 150000 \times 42^2$	(=19575000)	B1	Correct expression for KE loss
			M1	For 5 term work energy equation (or 4 terms if using loss in KE as 1 term)
	$150000g \times 500\sin\alpha = 19575000 + 16000 \times 500 - 4 \times 10^{6}$		A1	
	$\alpha = 1.8$		A1	
			5	

© UCLES 2019 Page 5 of 11

9709/43	Cambridge Internationa PUE	l AS/A Level – Mark B LISHED	Scheme	October/Novembe num	AN Notice on
Question	Answer		Marks	Guidance	This Cho.
3	Resolving horizontally or vertically		M1		SUD'COV
	$50\cos 20 + 60 - 100\sin 30$	(=56.984)	A1		
	100cos30 - 50sin20	(= 69.501)	A1		
	$R = \sqrt{(56.984^2 + 69.501^2)}$ or $\alpha = \tan^{-1} \left(\frac{56.984}{69.501}\right)$		M1	Method to find either R or α	
	R=89.9 (89.876)		A1		
	<i>α</i> =39.3 (39.348)		A1		
			6		

© UCLES 2019 Page 6 of 11

9709/43	Cambridge International AS/A Level – Mark PUBLISHED	: Scheme	October/November 73/7	1212
Question	Answer	Marks	Guidance	Tiths Cloud
4(i)	$s_{PQ} = 20 \times 10 - 0.5a \times 10^2$ or $s_{QR} = 20 \times 10 + 0.5a \times 10^2$	M1	October/November Thurston October Thurston Oc	Juli Com
	s = 200-50a and $1.5s = 200 + 50a$	A1	OE	
	$1.5(200 - 50a) = 200 + 50a \Rightarrow 100 = 125a \Rightarrow a = 0.8 \text{ ms}^{-2}$	B1	AG	
		3		
4(ii)	Distance $QS = 20 \times 20 + \frac{1}{2} \times 0.8 \times 20^2$	M1	Using $s = ut + \frac{1}{2}at^2$	
	Distance=560 m	A1		
	Average speed between Q and $S = \frac{560}{20} = 28 \text{ms}^{-1}$	B1		
		3		

© UCLES 2019 Page 7 of 11

09/43		ional AS/A Level – Mark Scheme PUBLISHED	
Question	Answer	Marks	Guidance
5(i)	Driving force = $\frac{240}{6}$ (= 40 N)	B1	October/Novembe Guidance Use of power = force × velocity
	$[40 - R = 80 \times 0.3]$	M1	Use of Newton's Second Law (3 terms)
	Resistance is 16 N	A1	AG
		3	
5(ii)	$\left[\frac{240}{v} = 16\right]$	M1	Use of $P=Fv$ with DF=resistance
	Steady speed is 15 ms ⁻¹	A1	
		2	
5(iii)	Use of Newton's Second Law	M1	(4 terms)
	$\frac{240}{4} - 16 - 80g\sin 3 = 80a$	A1	
	Acceleration is 0.0266 ms ⁻²	A1	
		3	

© UCLES 2019 Page 8 of 11

709/43	Cambridge International AS/A Level – Mark PUBLISHED	Scheme	October/November m_{t} $m_{$	MAN
Question	Answer	Marks	Guidance	Athsch.
Q6(i)	$10 = 0.04 \times 5^3 + 5^2 c + 5k \qquad (5c + k = 1)$	B1	Use of $t=5$, $v=10$	
	$s = \frac{0.04}{4}t^4 + \frac{ct^3}{3} + \frac{kt^2}{2} + (C)$	*M1		
	$25 = 0.01 \times 5^4 + \frac{5^3}{3}c + \frac{5^2}{2}k$	DM1	Use of $t = 0$, $s = 0$ and $t = 5$, $s = 25$	
	$6.25 + \frac{125}{3}c + \frac{25}{2}k = 25$ $\left(\frac{125}{3}c + \frac{25}{2}k = 18.75\right)$	A1		
	Solving for c or for k	M1		-
	c = -0.3 and $k = 2.5$	A1		
		6		
Q6(ii)	$a = 0.12t^2 - 0.6t + 2.5$	M1	For use of $a = \frac{dv}{dt}$	
	$a' = 0.24t - 0.6 = 0 \rightarrow t = \dots$ or $a = 0.12(t^2 - 5t + \dots) = 0.12[(t - 2.5)^2 + \dots]$	M1	Uses $\frac{da}{dt} = 0$ or completes the square for a	
	Minimum when $t = 2.5$	A1	AG	
		3		

© UCLES 2019 Page 9 of 11

	4
(Ma)	M. Mains cloud com
	150/040
	Y.COM

Question	Answer	Marks	Guidance
7(i)	$\[0.81 = 0 + \frac{1}{2} \times a \times 0.9^2 \]$	M1	For use of $s = ut + \frac{1}{2}at^2$
	a=2	A1	
	T - mg = ma or $kmg - T = kma$	M1	Use of Newton's Second Law for A or B or use of $a = \frac{(m_B - m_A)g}{(m_B + m_A)}$
	$T - mg = ma$ and $kmg - T = kma$ or $\left[a = \frac{(km - m)g}{(km + m)} \right]$	A1	
	$a = \frac{(kg - g)}{(k+1)} = 2 \rightarrow k = \dots$	M1	Solves to find <i>k</i>
	k = 1.5	A1	
	T = 10m + 2m = 12m N	B1	AG
		7	
7(ii)	Velocity of A when string breaks = 2×0.9 (=1.8 ms ⁻¹ upwards)	B1FT	For use of $v=u+at$ ft a from (i)
	$v^2 = 1.8^2 + 2g \times 1.62 \rightarrow v = \dots$	M1	For use of <i>suvat</i> to find v_A at ground
	Speed is 5.97 ms ⁻¹	A1	AG
	Time taken = $\frac{(1.8 + 5.97)}{g} = 0.777s$ (0.7769)	B1	
		4	

9709/43	Cambridge International AS/A Level – Mark Scheme PUBLISHED		October/Novembe nyn	Jains Cloud Com
Question	Answer	Marks	Guidance	THIS CIO.
7(iii)	Straight line from (0, 0) to (0.9, 1.8)	B1		Od, COD
	Straight line from (0.9, 1.8) to approx. (1.7, –6)	B1FT	FT 0.9 + <i>t</i> from (ii) for 1.7	
		2		

© UCLES 2019 Page 11 of 11