

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/43 October/November 2016

www.mymathscloud.com

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Mark Scheme Notes

Marks are of the following three types:

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being guoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			MN. M.
Page 3	Mark Scheme	Syllabus	P. Myman and
	Cambridge International AS/A Level – October/November 2016	9709	
The f	ollowing abbreviations may be used in a mark scheme or used on the	scripts:	43 TISCIOUD.COM
AEF/0	DE Any Equivalent Form (of answer is equally acceptable) / Or Equiv	alent	- Th

4

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

					Www.mym.mySyllabusP.November 2016970943For using WD = PE gain + WD against	
P	age 4	Mark Scheme Syllabus P. 173				
		Cambridge International AS/A Level – October/November 2016 9709 43				
1	(i)	PE gain = $50g \times 3.5$ (=1750)	B1		Jud	COM
		$[WD = 50g \times 3.5 + 25 \times 3.5]$	M1		For using WD = PE gain + WD against resistance	
		Work done = 1837.5 J or 1840 J	A1	[3]		
	(ii)	[P = 1837.5/2] or [P/v = 50g + 25 and $3.5=2v]$	M1		For using $P = WD/t$ or for using $P = Fv$ and $s = vt$	
		Power = 919 W	A1	[2]		
2			M1		For resolving horizontally	
			M1		For resolving vertically	
		$T_A \cos 50^\circ - T_B \cos 10^\circ = 0$ and $T_A \sin 50^\circ - T_B \sin 10^\circ - 20 \mathrm{g} = 0$	A1			
			M1		For solving equations to find T_A and T_B	
		Tension in PA is 306 N Tension in PB is 200 N	A1	[5]		
		Alternative (Lami's Theorem)				
		$[T_A/\sin 80^\circ = T_B/\sin 140^\circ = 20g/\sin 140^\circ]$	M1		For applying Lami's Theorem	
		$[T_A = 20g \sin 80^\circ / \sin 140^\circ]$	M1		For solving for T_A	
		Tension in PA is 306 N	A1			
		$[T_B = 20g \sin 140^\circ/\sin 140^\circ]$	M1		For solving for T_B	
		Tension in PB is 200 N	A1	[5]		

Page 5 Mark Sch Cambridge International AS/A Lev			eme Syllabus P. Junation vel – October/November 2016 9709 43			
	[7g - T = 7a and T - 3g = 3a] or $[7g - 3g = 10a]$	M1		SyllabusP./November 2016970943/November 2016970943/November 201697099709/November 20169		
	Acceleration is 4 ms ⁻²	A1				
	$[v^2 = 0 + 2 \times 4 \times 0.4] (v^2 = 3.2)$	M1		For using $v^2 = u^2 + 2as$		
	Speed is $1.79 \mathrm{ms}^{-1}$	A1	[4]			
(ii)	$[0 = 3.2 + 2 \times (-g) \times s] (s = 0.16)$	M1		For using $0 = u^2 + 2(-g)s$		
	0.16 + 0.4 = 0.56 So particle <i>Q</i> does not come to rest before it reaches the pulley	A1	[2]			
	Alternative					
	$[v^2 = 3.2 + 2 \times (-g) \times 0.1]$	M1		For using $v^2 = u^2 + 2(-g)(0.1)$		
	$v = \sqrt{1.2}$ (= 1.10) So particle <i>Q</i> does not come to rest before it reaches the pulley	A1	[2]			
i)	$s_A = \frac{1}{2}g \times 2.5^2 (= 31.25)$	B1				
	$[s_B = 20 \times 1.5 - \frac{1}{2}g \times 1.5^2] (= 18.75)$	M1		For using $s = ut + \frac{1}{2} at^2$		
	$\frac{1}{2}g \times 2.5^2 + 20 \times 1.5 - \frac{1}{2}g \times 1.5^2$ Height is 50 m AG	A1	[3]			
(ii)	$50 = 0.5 g t_A^2 \qquad (t_A = 3.16)$	B1		For using $s = \frac{1}{2} at^2$		
	$t_B = \sqrt{10 - 1} = 2.16$	B1				
	To top, $0^2 = 20^2 - 2gs_B \longrightarrow s_B = 20$	B1				
-	To top, $[0 = 20 - gt_B] \rightarrow t_B = 2$ Downwards, $[s_B = \frac{1}{2}g(0.16)^2] (= 0.13)$	M1		For using $v = u + at$ to find time to top for B and $s = \frac{1}{2}at^2$ to find downwards distance for B		
	Total distance is 20.1 m	A1	[5]			

Mark Scheme Cambridge International AS/A Level – October/November 2016 9709

Syllabus	

					Mun. Home Mun. Home Mun. Home Mun. Home Mun. Home Mun. Home Mun. Home		
Pa	age 6				Syllabus PL That	A BER	
	Cambridge International AS/A Level – October/November 2016 9709 43						
5	(i)	$6t - 0.3t^2 = 0 \rightarrow t = 20 \text{ (or } 0)$	B1			SUD.COD	
		$[s = 6t^2/2 - 0.3t^3/3 \ (+C)]$	M1		For integrating $v(t)$ to obtain $s(t)$.7	
		$[s = 6(20)^2/2 - 0.3(20)^3/3]$	DM1		For evaluating $s(t)$ when v=0		
		Distance OX is 400 m	A1	[4]			
	(ii)	$[v = kt - 6t^2 (+C)]$	M1*		For integrating $a(t)$ to obtain $v(t)$		
		$[s = kt^2/2 - 6t^3/3]$	M1*		For integrating $v(t)$ to obtain $s(t)$ and for using $s(0) = 0$		
		$[400 = 0.5k \times 10^2 - 2 \times 10^3]$	DM1		For using $t = 10$ and $s = 400$ to form equation in k		
		<i>k</i> = 48	A1	[4]			
6	(i)	Driving force = $160/5$ (= 32 N)	B1				
		$[160/5 - 20 = m \times 0.15]$	M1		For using Newton's Second Law		
		Total mass is 80 kg AG	A1	[3]			
	(ii)	$[300/v - 20 - 80g\sin^2 = 0]$	M1		For resolving up hill		
		Speed is $6.26 \mathrm{ms}^{-1}$ AG	A1	[2]			
	(iii)	Driving force = 300/(0.9 × 6.26) (= 53.2 N)	B1				
			M1		For using Newton's Second Law		
		$300/(0.9 \times 6.26) - 20 - 80g\sin^2 = 80a$	A1				
		Acceleration is $0.0666 \mathrm{ms}^{-2}$	A1	[4]			

				mm n m	
Page				Syllabus P. Unat	ath.
	Cambridge International AS/A L			/November 2016 9709 43 43	<i>6.</i>
7 (i)	$R = 50 g \cos 10^{\circ} \text{ and}$ $F = 50 g \sin 10^{\circ}$	B1		November 2016 9709 43	Ud.Com
	$\mu \ge 0.176$	B1	[2]	$\mu \ge F \div R$ Allow $\mu \ge \tan 10^\circ$	
(ii)	PE loss = $50g \times d\sin 10^\circ$	B1		d = 5 or d = 10	
	WD against friction = $0.19 \times 50 g \cos 10^\circ \times d$	B1		d = 5 or d = 10	
		M1		For using WD by 50 N force + PE loss – WD against friction = KE gain	
	$50 \times 5 + 50 g \times 10 \sin 10^{\circ} - 0.19 \times 50 g \cos 10^{\circ} \times 10 = 0.5 \times 50 v^{2}$	A1			
	Speed is $2.70 \mathrm{ms}^{-1}$	A1	[5]		
				SC for candidates using Newton's Second law: max $2/5$ B1 $v = 2.94 \text{ ms}^{-1}$ after 5 m B1 Speed is 2.70 ms^{-1}	
(iii)	$50g\sin 20^{\circ} - 0.19 \times 50g\cos 20^{\circ} = 50a$	M1		For using Newton's Second Law	
	Acceleration is $1.63 \mathrm{ms}^{-2}$	A1	[2]		