MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

WWW. MYMathscloud.com

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			www.m.
Page 2	Mark Scheme	Syllabus	Papy
	GCE AS/A LEVEL – October/November 2012	9709	42 91

OUD.COM.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

			mm.n. m
Page 3	Mark Scheme	Syllabus	Pap nary star
	GCE AS/A LEVEL – October/November 2012	9709	
The followin	g abbreviations may be used in a mark scheme or used	on the scripts:	42 ISCIOUD.COM

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through J" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

							^w ww.mymat. Pa μ. 42 DS α
Page	4	Mark Schem GCE AS/A LEVEL – Octobe		er 20	12	Syllabus 9709	Pap Unat
						aina WD – Eda	
			M1		Forl	using WD = Fdco	osα
WD =	= 45 × 2	5cos 14°	A1				
Work	done is	s 1090 J (1.09 kJ)	A1	3			
(i)	[0.6=	= 0 + 0.3a]	M1		For u	using $v = 0 + at$	
	Acce	leration is 2 ms^{-2}	A1	2			
 (ii) $[mg - T = 2m, T - (1 - m)g = 2(1 - m)]$			M1		For a or to	pplying Newton B	's 2 nd law to A
	or	$T/8 \rightarrow T - (10 - 1.25T) = 2 - 0.25T$ $3m \rightarrow 8m - (10 - 10m) = 2 - 2m]$	M1		For e	eliminating or ev	aluating <i>m</i>
	T + or	1.25T + 0.25T = 10 + 2					
		$0.6 \text{ and } \mathbf{T} = 8m$	A1				
	m = 0	0.6 and tension is 4.8 N	A1	4			
		Alternative	for part (ii))			
	[{ <i>m</i> -	$(1-m)$ × 2 = { $m - (1-m)$ } × g]	M1		For u	using $(m_{\rm A} + m_{\rm B})$ a	$\mathbf{u} = (m_{\mathrm{A}} - m_{\mathrm{B}})\mathbf{g}$
	<i>m</i> = ().6	A1				
	[<i>m</i> g -	-T = 2m or T - (1 - m)g = 2(1 - m)]	M1		or to	applying Newton B, substituting f ng for T	
	Tens	ion is 4.8 N	A1				

Page \$	5	Mark	Scheme				Syllabus	Parts
 	-	GCE AS/A LEVEL - 0		vembe	er 20′	12	9709	42
						Foru	using $s = ut + \frac{1}{2}$	$\frac{Pa}{42}$
			Ν	M 1		1010	,5111 <u>5</u> 5 72	
55 = 56	u + 12.	5 <i>a</i>	A	A1				
	· ·	0 u + 50a or .5a and $v_{\rm B} = u + 5a$	Δ	A1				
05 5	VB + 12	$.5a$ and $v_{\rm B}$ $a + 5a$		A 1		For s	solving for <i>a</i> or <i>i</i>	1
a = 0.4	(or u =	= 10)		A1		1013		ı
u = 0.4 u = 10		,		A1ft	6			
 <i>u</i> 10	(01 u	0.1)	Alternative		0			
 $v_{\rm P} = (5)$	5 + 65) ÷ (5 + 5)		·		For c	calculating the sp	need at R as the
vв (Э	5 1 05	(5 - 5)	Ν	/ 1			n speed for the m	
$v_{\rm B} = 12$	2ms ⁻¹		A	A1				
For cal	lculatin	g the speed at X, where X is	s the point					
	the car - 5 = 11	passes 2.5 s after passing th ms^{-1}	-	31				
[<i>a</i> = (1	2 – 11)	÷ 2.5]	Ν	<i>M</i> 1		For u	using $a = (v_{\rm B} - v_{\rm B})$	x) ÷ 2.5
<i>a</i> = 0.4	Ļ		A	A1				
$u = v_X$	$-a \times 2$	$.5 = 11 - 0.4 \times 2.5 = 10$	E	B 1				
(i)		$= 68^{2} - (-60)^{2}, Y_{3}^{2} = 100^{2} - 9$ 58sin 28.1°, Y ₃ = 100sin16.3		И1		or for β) be 68 ar axis.	using $Y^2 = F^2 - X$ r finding the angetween the forces and 100, respective Then find the two nitudes from 68s	gles (say α and s of magnitude vely, and the <i>x</i> - vo relevant
	For co	prrect magnitudes (32, 75, 23	8) A	A1		final	be scored by imp A1 is scored for yer to part (i)	
	Comp	ponents are -32 , 75 and -28	A	A1ft	3			
 (ii)	[R ² =(-	$-60 + 0 + 96)^2 + (-32 + 75 -$	$(-28)^2$] N	A 1		For u	using $R^2 = X^2 + Y$	Y ²
	Magn	itude is 39 N	A	A1				
	[θ = 1 96)}]	$\tan^{-1}\{(-32+75-28)\div(-60+1)$		/ 1		For u	using $\theta = \tan^{-1}$ (Y	Y/X)
	Direct	tion is 22.6° (or 0.395rad°)				Acce	ept just '22.6 from	m r avis' or iu

								MANN MY MAY Pap 42
	Page	6	Mark Sche GCE AS/A LEVEL – Octob		nber	2012	Syllabus 9709	Pap Thaths
5	(i)	Accel	eration for $t < 0.8$ is 4/0.8	B1				
		[5 = 1	0sin θ]	M1		For	using $a = g \sin \theta$	
		$\theta = 30$)°	A1		3		
			Alternati	ve for part	: (i)			
	(i)	[mgh	$= \frac{1}{2} m4^2$ and $s = \{(0+4) \div 2\} \times 0.$	8] M	[1		x using PE loss = K $(u + v) \div 2$ (A to B)	XE gain and $s \div t$
		sinθ =	= 0.8/1.6	А	1			
		$\theta = 30$	\mathbf{O}_{0}	А	1			
	(ii)	Accel	eration for $0.8 < t < 4.8$ is					
		-4/(4	8-0.8)	B1				
		[<i>mg</i> si	$n30^{\circ} - F = m(-1)]$	M1		For	using Newton's s	econd law
				M1		For	using $\mu = F / R$	
		$\mu = -\frac{n}{2}$	$\frac{ng\sin 30^{\circ} + m}{mg\cos 30^{\circ}}$	Alf	ì	ft fo part	ollowing a wrong a t (i)	answer for θ in
		Coeff	icient is 0.693	A1		5 Acc	cept 0.69	

Page	7	Mark Scheme				Syllabus	Part
	-	GCE AS/A LEVEL – October/N	ovembo	er 20	12	9709	42 91
(i)					For u	using $DF = 30000$	WWW.Myman Papanan 42
	[3000 1250	$20/v - 1000 - 1250g \times 30/500 = a$]	M1		For u	using Newton's 2	
	v _{botton} and	$n = 30000/(1250 \times 4 + 1000 + 750)$	M1				
		30000/(1250 × 0.2 + 1000 + 750)	A1				
	[½ 1	$250(15^2 - 4.44^2)]$	M1			using KE gain = $(v_{top}^2 - v_{bottom}^2)$	
	Incre	ase in KE is 128000 J (128 kJ)	A1	5			
		Alternative for	r part (i)				
(i)	[F –	$1000 - 1250g \times 30/500 = 1250a$]	M1		to fi	using Newton's s nd the driving for om and the top	
		$m = 1250 \times 4 + 1000 + 750 = 6750$ and = $1250 \times 0.2 + 1000 + 750 = 2000$	A1				
	[V _{bott}	$v_{\rm top} = 30000/6750$ and $v_{\rm top} = 30000/2000$]	M1			using DF = 30000 m and v_{top})/v to find
	[1/2]	$1250(15^2 - 4.44^2)]$	M1		For $\frac{1}{2}m$	using KE gain = $(v_{top}^2 - v_{bottom}^2)$	
	Incre	ease in KE is 128000 J (128 kJ)	A1				
(ii)	PE g	ain = $1250g \times 30$ and					
	WD	against resistance = 1000×500	B1				
	[WD	$_{\rm car} = 128000 + 375000 + 500000]$	M1			using WD by car' gain + PE gain + ' tance	÷
	Worl	c done is 1000 000 J (1000 kJ)	A1ft	3	ft inc	correct answer in	(i)
pecial Rul w. (Max 3		lying to part (i) for candidates who omit 5)	the weig	t co	mpone	nt in applying Ne	wton's second
(i)		$n = 30000/(1250 \times 4 + 1000)$ and $= 30000/(1250 \times 0.2 + 1000)$	B1				
	[½ 1	$250(24^2-5^2)]$	M1			using KE gain = $(v_{top}^2 - v_{bottom}^2)$	
		ase in KE is 344000 J (344 kJ)	A1				

								Paparath 42	
	Page	8	Mark Scheme			Syllabus	Papyman	Marth (
			GCE AS/A LEVEL – October	/Novemb	ber 20'	12	9709	42 N	Sc/Q
7	(i)	dv/dt	$=k(120t-3t^2)$	B1					SUD.COM
		[v(40	$k(60 \times 40^2 - 40^3) = 6.4]$	M1		when	finding v_{max} as the dv/dt = 0 and $tting with 6.4$		
		<i>k</i> = 0	.0002	A1	3	AG			
	(ii)	t = 60	0 at A	B1					
				M1		For in	ntegrating $v(t)$ to	find $s(t)$	
		s(t) =	$= 0.0002(20t^3 - t^4/4) (+C)$	A1					
		[<i>OA</i> =	$= 0.0002 \times (20 \times 60^3 - 60^4/4)]$	M1		s(t) w	using limits 0 to 0 when $t = 60$ with be implied by its	C = 0 (which	
		Dista	nce is 216 m	A1	5				
	(iii)	[dv/d	$t = 0.0002(120 \times 60 - 3 \times 60^2)]$	M1		For e	evaluating dv/dt	when $t = 60$	
		Magı	nitude of acceleration is 0.72 ms^{-2}	A1	2	Acce	pt $a = -0.72 \text{ ms}^-$	-2	
	(iv)		$-0.25 t^4 = 0,$.0002(60 × 80 ² - 80 ³)]	M1			ttempting to solver the solver solver the solver solver the substitution of the substi		
		Spee	d is 25.6 ms ⁻¹	A1	2				