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1 It is given that z = ln�y + 2� − ln�y + 1�. Express y in terms of z. [3]

2 The equation of a curve is y = sin x

1 + cos x
, for −0 < x < 0. Show that the gradient of the curve is positive

for all x in the given interval. [4]

3 Express the equation cot 21 = 1 + tan1 as a quadratic equation in tan1. Hence solve this equation for
0Å < 1 < 180Å. [6]

4 The polynomial 4x4 + ax2 + 11x + b, where a and b are constants, is denoted by p�x�. It is given that

p�x� is divisible by x2 − x + 2.

(i) Find the values of a and b. [5]

(ii) When a and b have these values, find the real roots of the equation p�x� = 0. [2]

5
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The diagram shows a variable point P with coordinates �x, y� and the point N which is the foot of the

perpendicular from P to the x-axis. P moves on a curve such that, for all x ≥ 0, the gradient of the

curve is equal in value to the area of the triangle OPN, where O is the origin.

(i) State a differential equation satisfied by x and y. [1]

The point with coordinates �0, 2� lies on the curve.

(ii) Solve the differential equation to obtain the equation of the curve, expressing y in terms of x.

[5]

(iii) Sketch the curve. [1]

6 Let I = Ô 4

1

��x� − 1

2�x + �
x� dx.

(i) Using the substitution u = �
x, show that I = Ô 2

1

u − 1

u + 1
du. [3]

(ii) Hence show that I = 1 + ln 4
9
. [6]
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7 Throughout this question the use of a calculator is not permitted.

The complex number z is defined by z = �ï2� − �ï6�i. The complex conjugate of z is denoted by z*.

(i) Find the modulus and argument of z. [2]

(ii) Express each of the following in the form x + iy, where x and y are real and exact:

(a) z + 2z*;

(b)
z*

iz
.

[4]

(iii) On a sketch of an Argand diagram with origin O, show the points A and B representing the

complex numbers z* and iz respectively. Prove that angle AOB is equal to 1
6
0. [3]

8 Let f�x� = 3x2 + x + 6

�x + 2��x2 + 4�
.

(i) Express f�x� in partial fractions. [5]

(ii) Hence obtain the expansion of f�x� in ascending powers of x, up to and including the term in x2.

[5]

9
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The diagram shows the curves y = x cos x and y = k

x
, where k is a constant, for 0 < x ≤ 1

2
0. The curves

touch at the point where x = a.

(i) Show that a satisfies the equation tan a = 2

a
. [5]

(ii) Use the iterative formula a
n+1 = tan−1

@
2

a
n

A
to determine a correct to 3 decimal places. Give the

result of each iteration to 5 decimal places. [3]

(iii) Hence find the value of k correct to 2 decimal places. [2]

[Question 10 is printed on the next page.]
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10 The line l has vector equation r = i + 2j + k + ,�2i − j + k�.

(i) Find the position vectors of the two points on the line whose distance from the origin is
��10�.

[5]

(ii) The plane p has equation ax + y + z = 5, where a is a constant. The acute angle between the line

l and the plane p is equal to sin−1�2
3

�
. Find the possible values of a. [5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable

effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will

be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International

Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after

the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local

Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/33/O/N/16

www.m
ym

athscloud.com

https://mymathscloud.com

