

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS
Paper 3
October/November 2016
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			·12.	2
Page 2	Mark Scheme	Syllabus	Piln	The state of the s
	Cambridge International A Level – October/November 2016	9709	31	Ary Cons

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			·12.	2
Page 3	Mark Scheme	Syllabus	Piln	The state of the s
	Cambridge International A Level – October/November 2016	9709	31	Ary Or

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\hline \)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

			3. 3
Page 4	Mark Scheme	Syllabus	P. My
	Cambridge International A Level – October/November 2016	9709	31 8/1/20 1/3
	-		

				·O,
1	Use correc	3^x and obtain $3^x = \frac{18}{7}$ ct method for solving an equation of the form $3^x = a$, where $a > 0$ swer $x = 0.860$ 3 d.p. only	B1 M1 A1	[3]
2	State corre	ect unsimplified first two terms of the expansion of $(1+2x)^{-\frac{3}{2}}$, e.g. $1+(-\frac{3}{2})(2x)$ ect unsimplified term in x^2 , e.g. $(-\frac{3}{2})(-\frac{3}{2}-1)(2x)^2/2!$ efficient terms of the product of $(2-x)$ and the expansion up to the term in x^2 tal answer $2-7x+18x^2$ Do not ISW	B1 B1 M1 A1	[4]
3	EITHER:	Correctly restate the equation in terms of $\sin\theta$ and $\cos\theta$ Correct method to obtain a horizontal equation $\sin\sin\theta$ Reduce the equation to a correct quadratic in any form, e.g. $3\sin^2\theta - \sin\theta - 2 = 0$ Solve a three-term quadratic for $\sin\theta$ Obtain final answer $\theta = -41.8^{\circ}$ only [Ignore answers outside the given interval.]	B1 M1 A1 M1 A1	
	OR 1:	Square both sides of the equation and use $1 + \tan^2 \theta = \sec^2 \theta$ Correct method to obtain a horizontal equation $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $9\sin^2 \theta - 6\sin \theta - 8 = 0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^{\circ}$ only	B1 M1 A1 M1 A1	
	OR 2:	Multiply through by $(\sec\theta + \tan\theta)$ Use $\sec^2\theta - \tan^2\theta = 1$ Obtain $1 = 3 + 3\sin\theta$ Solve for $\sin\theta$ Obtain final answer $\theta = -41.8^{\circ}$ only	M1 B1 A1 M1	[5]

			3. 3
Page 5	Mark Scheme	Syllabus	P. Janan
	Cambridge International A Level – October/November 2016	9709	31 30
	-		

						0,
4		EITHER:	EITHER:	State $2xy + x^2 \frac{dy}{dx}$, or equivalent, as derivative of x^2y	B1	John'C
				State $6y^2 + 12xy \frac{dy}{dx}$, or equivalent, as derivative of $6xy^2$	B1	
			OR:	Differentiating LHS using correct product rule, state term $xy(1-6\frac{dy}{dx})$, or		
				equivalent	B 1	
				State term $(y + x \frac{dy}{dx})(x - 6y)$, or equivalent	B1	
				Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	M1*	
				Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1	
				Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$ Obtain an equation in x or y Obtain answer $(-3a, -a)$	A1 DM1 A1	
		OR:	Rearrange	to $y = \frac{9a^3}{x(x-6y)}$ and use correct quotient rule to obtain $-\frac{9a^3}{x^2(x-6y)^2} \times \dots$	B1	
			State term	(x-6y)+x(1-6y'), or equivalent	B1	
				vision by $x(x - 6y)$	B1	
			Set $\frac{dy}{dx}$ equ	ual to zero	M1*	
			Obtain a h	norizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1	
				equation in x or y	DM1	[7]
			Obtain ans	swer $(-3a, -a)$	A1	[7]
5	(i)	EITHER:		4 formula to express LHS in terms of $\tan \theta$	M1	
				s a single fraction in any correct form	A1 M1	
			-	goras or $\cos 2A$ formula given result correctly	A1	
		OR:	Express L	HS in terms of $\sin 2\theta$, $\cos 2\theta$, $\sin \theta$ and $\cos \theta$	M1	
			Express as	s a single fraction in any correct form	A1	
			•	goras or $\cos 2A$ formula or $\sin(A-B)$ formula e given result correctly	M1 A1	[4]
	(ii)	Integrate a	and obtain a	term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents)	M1*	
		Obtain int	egral $-\frac{1}{2}\ln(c)$	$\cos 2\theta$) + $\ln(\cos \theta)$, or equivalent	A1	
				ectly (expect to see use of both limits)	DM1	[F 4 7
		Obtain the	given ansv	ver following full and correct working	A1	[4]

			3. 3
Page 6	Mark Scheme	Syllabus	Puly
	Cambridge International A Level – October/November 2016	9709	31 8/1/20 1/3

			·O,
6 (i)	Make recognizable sketch of a relevant graph Sketch the other relevant graph and justify the given statement	B1 B1	[2]
(ii)	Use calculations to consider the value of a relevant expression at $x = 1.4$ and $x = 1.6$, or the values of relevant expressions at $x = 1.4$ and $x = 1.6$. Complete the argument correctly with correct calculated values	M1 A1	[2]
(iii)	State $x = 2\sin^{-1}\left(\frac{3}{x+3}\right)$ Rearrange this in the form $\csc\frac{1}{2}x = \frac{1}{3}x + 1$ If working in reverse, need $\sin\frac{x}{2} = \left(\frac{3}{x+3}\right)$ for first B1	B1 B1	[2]
(iv)	Use the iterative formula correctly at least once Obtain final answer 1.471 Show sufficient iterations to 5 d.p. to justify 1.471 to 3 d.p., or show there is a sign change in the interval (1.4705, 1.4715)	M1 A1 A1	[3]
7 (i)	Use the correct product rule Obtain correct derivative in any form, e.g. $(2-2x)e^{\frac{1}{2}x} + \frac{1}{2}(2x-x^2)e^{\frac{1}{2}x}$ Equate derivative to zero and solve for x Obtain $x = \sqrt{5} - 1$ only	M1 A1 M1 A1	[4]
(ii)	Integrate by parts and reach $a(2x-x^2)e^{\frac{1}{2}x}+b\int(2-2x)e^{\frac{1}{2}x}dx$ Obtain $2e^{\frac{1}{2}x}(2x-x^2)-2\int(2-2x)e^{\frac{1}{2}x}dx$, or equivalent Complete the integration correctly, obtaining $(12x-2x^2-24)e^{\frac{1}{2}x}$, or equivalent Use limits $x=0$, $x=2$ correctly having integrated by parts twice Obtain answer $24-8e$, or exact simplified equivalent	M1* A1 A1 DM1 A1	[5]

			3. 2
Page 7	Mark Scheme	Syllabus	Puly
	Cambridge International A Level – October/November 2016	9709	31 8/1/20 1/3
	-		

8 (i)	State or imply a correct normal vector to either plane, e.g. $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ or $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ Use correct method to calculate their scalar product Show value is zero and planes are perpendicular		B1 M1 A1	[3]	
(ii)	EITHER:	Obtain su	t a complete strategy for finding a point on l the line of intersection uch a point, e.g. $(0, 7, 5)$, $(1, 0, 1)$, $(5/4, -7/4, 0)$: State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for l ,	M1 A1	
		BIIIIBN.	e.g. $3a+b-c=0$ and $a-b+2c=0$	B1	
			Solve for one ratio, e.g. $a : b$	M1	
			Obtain $a:b:c=1:-7:-4$, or equivalent	A1	
			State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	A1 √	
		OR1:	Obtain a second point on l , e.g. $(1, 0, 1)$	B1	
			Subtract vectors and obtain a direction vector for <i>l</i>	M1	
			Obtain $-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$, or equivalent	A1	
			State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$	A1 √	
		OR2:	Attempt to find the vector product of the two normal vectors	M1	
			Obtain two correct components of the product	A1	
			Obtain $\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$, or equivalent	A1	
			State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	A1√	
	OR1:		one variable in terms of a second variable	M1	
			correct simplified expression, e.g. $y = 7 - 7x$	A1	
			the third variable in terms of the second	M1	
			correct simplified expression, e.g. $z = 5 - 4x$	A1	
			vector equation for the line correct equation, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	M1 A1√	
		Obtain a	correct equation, e.g. $\mathbf{r} = 7\mathbf{j} + 3\mathbf{k} + \lambda(\mathbf{l} - 7\mathbf{j} - 4\mathbf{k})$	AIV	
	OR2:	Express of	one variable in terms of a second variable	M1	
			correct simplified expression, e.g. $z = 5 - 4x$	A1	
			the same variable in terms of the third	M1	
			correct simplified expression e.g. $z = (7 + 4y) / 7$	A1	
		Form a v	rector equation for the line	M1	
		Obtain a	correct equation, e.g. $\mathbf{r} = \frac{5}{4}\mathbf{i} - \frac{7}{4}\mathbf{j} + \lambda(-\frac{1}{4}\mathbf{i} + \frac{7}{4}\mathbf{j} + \mathbf{k})$	A1 [∧]	[6]

			3. 3
Page 8	Mark Scheme	Syllabus	P. That Air
	Cambridge International A Level – October/November 2016	9709	31 8/1/20 1/3
	-		

				OLY
(a)	EITHER:	•	M1	10/14.C
			M1	
		Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$	A1	
		Multiply numerator and denominator of an answer by $-2i + 1$, or equivalent	M1	
		Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1	
	OR1:	Multiply the equation by $1-2i$	M1	
		Use $i^2 = -1$	M1	
		Obtain $5w^2 + 4w(1-2i) - (1-2i)^2 = 0$, or equivalent	A1	
		Use quadratic formula or factorise to solve for w	M1	
		Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1	
	OR2:	Substitute $w = x + iy$ and form equations for real and imaginary parts	M1	
		Use $i^2 = -1$	M1	
		Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e.	A1	
		Form equation in x only or y only and solve	M1	
		Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1	[5]
(b)	Show a cir	rcle with centre 1 + i	B1	
	Show a circle with radius 2		B1	
	Show half-line arg $z = \frac{1}{4}\pi$		B 1	
	Show half-line arg $z = -\frac{1}{4}\pi$		B 1	
	Shade the correct region		B 1	[5]
		OR1: OR2: (b) Show a cir Show a cir Show half Show half	Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$ Multiply numerator and denominator of an answer by $-2i+1$, or equivalent Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1+2i$ OR1: Multiply the equation by $1-2i$ Use $i^2 = -1$ Obtain $5w^2 + 4w(1-2i) - (1-2i)^2 = 0$, or equivalent Use quadratic formula or factorise to solve for w Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1+2i$ OR2: Substitute $w = x + iy$ and form equations for real and imaginary parts Use $i^2 = -1$ Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e. Form equation in x only or y only and solve Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$ (b) Show a circle with centre $1 + i$ Show a circle with radius 2 Show half-line arg $z = \frac{1}{4}\pi$ Show half-line arg $z = -\frac{1}{4}\pi$	Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$ Multiply numerator and denominator of an answer by $-2i+1$, or equivalent Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1+2i$ OR1: Multiply the equation by $1-2i$ Use $i^2 = -1$ Obtain $5w^2 + 4w(1-2i) - (1-2i)^2 = 0$, or equivalent Use quadratic formula or factorise to solve for w Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1+2i$ OR2: Substitute $w = x + iy$ and form equations for real and imaginary parts Use $i^2 = -1$ Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e. A1 Form equation in x only or y only and solve Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1+2i$ A1 (b) Show a circle with centre $1+i$ Show a circle with radius 2 Show half-line arg $z = -\frac{1}{4}\pi$ B1 Show half-line arg $z = -\frac{1}{4}\pi$ B1 B1 Show half-line arg $z = -\frac{1}{4}\pi$

			3. 2
Page 9	Mark Scheme	Syllabus	P. Mark
	Cambridge International A Level – October/November 2016	9709	31 8/1/20 0/3
	-	•	

					·O ₂
10	(i)	Integrate a	ariables correctly and integrate at least one side and obtain term kt , or equivalent a relevant method to obtain A and B such that $\frac{1}{x(4-x)} = \frac{A}{x} + \frac{B}{4-x}$, or equivalent	M1 A1 M1*	JOHO. C.C.
		Obtain $A = B = \frac{1}{4}$, or equivalent			
		Integrate and obtain terms $\frac{1}{4} \ln x - \frac{1}{4} \ln(4-x)$, or equivalent			
		EITHER:	Use a pair of limits in an expression containing $p \ln x$, $q \ln(4 - x)$ and rt and evaluate a constant Obtain correct answer in any form, e.g. $\ln x - \ln(4 - x) = 4kt - \ln 9$,	DM1	
			or $\ln\left(\frac{x}{4-x}\right) = 4kt - 8k$	A1	
			Use a second pair of limits and determine <i>k</i> Obtain the given exact answer correctly	DM1 A1	
		OR:	Use both pairs of limits in a definite integral Obtain the given exact answer correctly Substitute k and either pair of limits in an expression containing $p \ln x$, $q \ln(4 - x)$ and rt and evaluate a constant	M1* A1 DM1	
			Obtain $\ln \frac{x}{4-x} = t \ln 3 - \ln 9$ or equivalent	A1	[9]
	(ii)	Substitute Obtain ans	x = 3.6 and solve for $tswer t = 4$	M1 A1	[2]