

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			WWW. D. M.
Page 2	Mark Scheme	Syllabus	Pat Martin
	GCE A LEVEL – October/November 2013	9709	32 41/10 15
ark Scheme No	otes		32 Thscioud
Marks are of	the following three types:		···Com

Mark Scheme Notes

Marks are of the following three types:

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally • independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following • on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			mm m
Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	32 Athers
The followir	ng abbreviations may be used in a mark scheme or use	ed on the scripts	32 Inscloud.con
AEF A	ny Equivalent Form (of answer is equally acceptable)		

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt[4]{"}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

				www.r.	12
Page) 4	Mark Scheme GCE A LEVEL – October/November 2013	Syllabus 9709	Pap	mary sens
Obtain	n correct	otient or product rule derivative in any form n statement	3703	M1 A1 A1	mainscloud. [3]
EITHE		or imply non-modular equation $2^2(3^x-1)^2 = (3^x)^2$, or pai $-1) = \pm 3^x$	r of equations	M1	
	Obtai	n $3^x = 2$ and $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$)		A1	
OR:		n $3^x = 2$ by solving an equation or by inspection		B1	
		n $3^{x} = \frac{2}{3}$ (or $3^{x+1} = 2$) by solving an equation or by inspect	ion	B1	
	orrect me	thod for solving an equation of the form $3^x = a$ (or $3^{x+1} = a$) swers 0.631 and -0.369		M1 A1	[4]
EITHE	ER: Integr	rate by parts and reach $kx^{\frac{1}{2}} \ln x - m \int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$		M1*	
	Obtai	n $2x^{\frac{1}{2}} \ln x - 2 \int \frac{1}{x^{\frac{1}{2}}} dx$, or equivalent		A1	
	Subst Obtai	rate again and obtain $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}}$, or equivalent itute limits $x = 1$ and $x = 4$, having integrated twice n answer $4(\ln 4 - 1)$, or exact equivalent		A1 M1(dep*) A1	
OR1:		g $u = \ln x$, or equivalent, integrate by parts and reach $kue^{\frac{1}{2}u}$	$-m\int e^{\frac{1}{2}u}du$	M1*	
		n $2ue^{\frac{1}{2}u} - 2\int e^{\frac{1}{2}u} du$, or equivalent		A1	
	Subst	rate again and obtain $2ue^{\frac{1}{2}u} - 4e^{\frac{1}{2}u}$, or equivalent itute limits $u = 0$ and $u = \ln 4$, having integrated twice n answer $4\ln 4 - 4$, or exact equivalent		A1 M1(dep*) A1	
OR2:	Using	g $u = \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u - m \int u$	$\frac{1}{u}$ du	M1*	
	Obtai	n $4u \ln u - 4 \int 1 du$, or equivalent		A1	
		rate again and obtain $4u \ln u - 4u$, or equivalent itute limits $u = 1$ and $u = 2$, having integrated twice or quo	ted $\int \ln u du$	A1	
	as <i>u</i> l	$nu \pm u$ n answer $8ln2-4$, or exact equivalent	J	M1(dep*) A1	
OR3:	Integr	rate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x \sqrt{x}} dx$		M1*	
	Obtai	n $I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{2}I - \frac{1}{2}\int \frac{1}{\sqrt{x}} dx$		A1	
	Subst	rate and obtain $I = 2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent itute limits $x = 1$ and $x = 4$, having integrated twice n answer $4 \ln 4 - 4$, or exact equivalent		A1 M1(dep*) A1	[5]

			mm.	mainscioud.com
	Page 5	Mark Scheme Syllabus	Pap	m Mar
		GCE A LEVEL – October/November 2013 9709	32	dithe is
4		ect product or quotient rule at least once	M1*	Cloud.co
		$\frac{dx}{dt} = e^{-t} \sin t - e^{-t} \cos t \text{ or } \frac{dy}{dt} = e^{-t} \cos t - e^{-t} \sin t \text{ , or equivalent}$	A1	OM
		$=\frac{\mathrm{d}y}{\mathrm{d}t}\div\frac{\mathrm{d}x}{\mathrm{d}t}$	M1	
	Obtain -	$\frac{dy}{dx} = \frac{\sin t - \cos t}{\sin t + \cos t}, \text{ or equivalent}$	A1	
	EITHER	Express $\frac{dy}{dx}$ in terms of tan <i>t</i> only	M1(dep*)	
		Show expression is identical to $\tan\left(t-\frac{1}{4}\pi\right)$	A1	
	OR:	Express $\tan\left(t - \frac{1}{4}\pi\right)$ in terms of $\tan t$	M1	
		Show expression is identical to $\frac{dy}{dx}$	A1	[6]
5	(i)	Use Pythagoras	M1	
		Use the sin2 <i>A</i> formula Obtain the given result	M1 A1	[3]
	(ii)	Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral of the $p \ln \tan \theta$	form M1*	
		Obtain indefinite integral $\frac{1}{2}\ln\sin\theta - \frac{1}{2}\ln\cos\theta$, or equivalent, or $\frac{1}{2}\ln\tan\theta$	A1	
		Substitute limits correctly Obtain the given answer correctly having shown appropriate working	M1(dep)* A1	[4]
6	(i)	State or imply $AB = 2r\cos\theta$ or $AB^2 = 2r^2 - 2r^2\cos(\pi - 2\theta)$	B1	
		Use correct formula to express the area of sector <i>ABC</i> in terms of <i>r</i> and θ	M1	
		Use correct area formulae to express the area of a segment in terms of r and θ .	M1	
		State a correct equation in <i>r</i> and θ in any form Obtain the given answer	A1 A1	[5]
		[SR: If the complete equation is approached by adding two sectors to the sh area above <i>BO</i> and <i>OC</i> give the first M1 as on the scheme, and the second for using correct area formulae for a triangle <i>AOB</i> or <i>AOC</i> , and a sector or <i>AOC</i> .]	aded 1 M1	[6]
	(ii)	Use the iterative formula correctly at least once	M1	
		Obtain final answer 0.95	A1	
		Show sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a change in the interval (0.945, 0.955)	sign A1	[3]

	ge 6	Mark Scheme Syllabus	Pap	m 8
	U	GCE A LEVEL – October/November 2013 9709	32	ANA INatinso
		A = Br + C		
	(i)	State or imply partial fractions are of the form $\frac{A}{x-2} + \frac{Bx+C}{x^2+3}$	B1	
		Obtain one of the values $A = -1$, $B = 3$, $C = -1$ Obtain a second value	A1 A1	
		Obtain the third value	A1 A1	[5]
		Use correct method to obtain the first two terms of the expansions of $(x - 2)^{-1}$		
		Use correct method to obtain the first two terms of the expansions of $(x-2)^{-1}$,		
		$\left(1-\frac{1}{2}x\right)^{-1}, \left(x^2+3\right)^{-1} \text{ or } \left(1+\frac{1}{3}x^2\right)^{-1}$	M1	
		Substitute correct unsimplified expansions up to the term in x^2 into each		
		partial fraction $A1\sqrt{+}$		
		Multiply out fully by $Bx + C$, where $BC \neq 0$	M1	
		Obtain final answer $\frac{1}{6} + \frac{5}{4}x + \frac{17}{72}x^2$, or equivalent	A1	[5]
		[Symbolic binomial coefficients, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are not sufficient for the M1. The f.t. is		
		on A, B, C.] $(-2, -1)(-2, -1)^{-1}$		
		[In the case of an attempt to expand $(2x^2 - 7x - 1)(x - 2)^{-1}(x^2 + 3)^{-1}$, give M1A1A1		
		for the expansions, M1 for multiplying out fully, and A1 for the final answer.]		
		for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i);		
		for the expansions, M1 for multiplying out fully, and A1 for the final answer.]		
		for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); $M1A1\sqrt[h]{A1\sqrt[h]{i}}$ in (ii)]	M1	
(a)		for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); $M1A1\sqrt[h]{A1\sqrt[h]{h}}$ in (ii)] <i>HER:</i> Solve for <i>u</i> or for <i>v</i>	M1	
(a)		for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{}$ A1 $\sqrt[4]{}$ in (ii)] HER: Solve for u or for v Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent	M1 A1	
(a)		for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[h]$ A1 $\sqrt[h]$ in (ii)] HER: Solve for u or for v Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent Either: Multiply a numerator and denominator by conjugate of denominator,		
(a)		for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{}$ A1 $\sqrt[4]{}$ in (ii)] HER: Solve for u or for v Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent		
(a)	EITF	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}\sqrt[4]{in}$ in (ii)] HER: Solve for u or for v Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent Either: Multiply a numerator and denominator by conjugate of denominator, or equivalent Or: Set u or v equal to $x + iy$, obtain two equations by equating real and imaginary parts and solve for x or for y		
(a)		for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}\sqrt[4]{i}$ in (ii)] HER: Solve for u or for v Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent Either: Multiply a numerator and denominator by conjugate of denominator, or equivalent Or: Set u or v equal to $x + iy$, obtain two equations by equating real and imaginary parts and solve for x or for y Using $a + ib$ and $c + id$ for u and v, equate real and imaginary parts and obtain	A1 M1	
(a)	EITF	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[h]{A1}\sqrt[h]{in (ii)}$] HER: Solve for u or for v Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent Either: Multiply a numerator and denominator by conjugate of denominator, or equivalent Or: Set u or v equal to $x + iy$, obtain two equations by equating real and imaginary parts and solve for x or for y Using $a + ib$ and $c + id$ for u and v, equate real and imaginary parts and obtain four equations in a, b, c and d	A1 M1 M1	
(a)	EITH OR:	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}$ in (ii)] <i>HER:</i> Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent <i>Either</i> : Multiply a numerator and denominator by conjugate of denominator, or equivalent <i>Or:</i> Set <i>u</i> or <i>v</i> equal to $x + iy$, obtain two equations by equating real and imaginary parts and solve for <i>x</i> or for <i>y</i> Using $a + ib$ and $c + id$ for <i>u</i> and <i>v</i> , equate real and imaginary parts and obtain four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and $-b + c = 3$, or equivalent Solve for one unknown	A1 M1	
(a)	EITH OR: Obta	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}\sqrt[4]{in}$ in (ii)] <i>HER</i> : Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent <i>Either</i> : Multiply a numerator and denominator by conjugate of denominator, or equivalent <i>Or</i> : Set <i>u</i> or <i>v</i> equal to <i>x</i> + <i>iy</i> , obtain two equations by equating real and imaginary parts and solve for <i>x</i> or for <i>y</i> Using <i>a</i> + <i>ib</i> and <i>c</i> + <i>id</i> for <i>u</i> and <i>v</i> , equate real and imaginary parts and obtain four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and $-b + c = 3$, or equivalent Solve for one unknown in final answer $u = -2$ –2i, or equivalent	A1 M1 A1 M1 A1	
(a)	EITH OR: Obta	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}$ in (ii)] <i>HER:</i> Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent <i>Either</i> : Multiply a numerator and denominator by conjugate of denominator, or equivalent <i>Or:</i> Set <i>u</i> or <i>v</i> equal to $x + iy$, obtain two equations by equating real and imaginary parts and solve for <i>x</i> or for <i>y</i> Using $a + ib$ and $c + id$ for <i>u</i> and <i>v</i> , equate real and imaginary parts and obtain four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and $-b + c = 3$, or equivalent Solve for one unknown	A1 M1 A1 M1	[5]
	<i>EITF</i> <i>OR:</i> Obta Obta	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}$ in (ii)] <i>HER</i> : Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent <i>Either</i> : Multiply a numerator and denominator by conjugate of denominator, or equivalent <i>Or</i> : Set <i>u</i> or <i>v</i> equal to <i>x</i> + <i>iy</i> , obtain two equations by equating real and imaginary parts and solve for <i>x</i> or for <i>y</i> Using <i>a</i> + <i>ib</i> and <i>c</i> + <i>id</i> for <i>u</i> and <i>v</i> , equate real and imaginary parts and obtain four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and $-b + c = 3$, or equivalent Solve for one unknown in final answer $u = -2$ -2i, or equivalent in final answer $v = 1 + 2i$, or equivalent	A1 M1 A1 A1 A1 A1	[5]
	<i>EITF</i> <i>OR:</i> Obta Obta	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}\sqrt[4]{in}$ in (ii)] <i>HER</i> : Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent <i>Either</i> : Multiply a numerator and denominator by conjugate of denominator, or equivalent <i>Or</i> : Set <i>u</i> or <i>v</i> equal to <i>x</i> + <i>iy</i> , obtain two equations by equating real and imaginary parts and solve for <i>x</i> or for <i>y</i> Using <i>a</i> + <i>ib</i> and <i>c</i> + <i>id</i> for <i>u</i> and <i>v</i> , equate real and imaginary parts and obtain four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and $-b + c = 3$, or equivalent Solve for one unknown in final answer $u = -2$ –2i, or equivalent	A1 M1 A1 M1 A1	[5]
	<i>EITH</i> <i>OR:</i> Obta Obta Show	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}$ in (ii)] <i>HER:</i> Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent <i>Either</i> : Multiply a numerator and denominator by conjugate of denominator, or equivalent <i>Or:</i> Set <i>u</i> or <i>v</i> equal to $x + iy$, obtain two equations by equating real and imaginary parts and solve for <i>x</i> or for <i>y</i> Using $a + ib$ and $c + id$ for <i>u</i> and <i>v</i> , equate real and imaginary parts and obtain four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and $-b + c = 3$, or equivalent Solve for one unknown in final answer $u = -2$ -2i, or equivalent in final answer $v = 1 + 2i$, or equivalent w a circle with centre -i v a circle with radius 1	A1 M1 A1 A1 A1 A1 B1	[5]
	<i>EITF</i> <i>OR:</i> Obta Obta Show Show	for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If <i>B</i> or <i>C</i> omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt[4]{A1}$ A1 $\sqrt[4]{A1}$ in (ii)] <i>HER</i> : Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent <i>Either</i> : Multiply a numerator and denominator by conjugate of denominator, or equivalent <i>Or</i> : Set <i>u</i> or <i>v</i> equal to <i>x</i> + <i>iy</i> , obtain two equations by equating real and imaginary parts and solve for <i>x</i> or for <i>y</i> Using <i>a</i> + <i>ib</i> and <i>c</i> + <i>id</i> for <i>u</i> and <i>v</i> , equate real and imaginary parts and obtain four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and $-b + c = 3$, or equivalent Solve for one unknown in final answer $u = -2$ -2 <i>i</i> , or equivalent in final answer $v = 1 + 2i$, or equivalent v a circle with centre $-i$	A1 M1 A1 A1 A1 A1 B1 B1	[5]

					mm. h	12
F	Page 7	,	Mark Scheme	Syllabus	Papy	A ar
	<u>~</u>		GCE A LEVEL – October/November 2013	9709	32	athons
9	(i)	EITHEI	<i>R</i> :Obtain a vector parallel to the plane, e.g. $\overrightarrow{AB} = -2\mathbf{i} + 4\mathbf{j}$ Use scalar product to obtain an equation in <i>a</i> , <i>b</i> , <i>c</i> , e.		B1=0,	AMA ARABINS CIOLID. COM
			3a-3b+3c=0, or $a+b+2c=0$		1111	
			Obtain two correct equations in <i>a</i> , <i>b</i> , <i>c</i>		A1	
			Solve to obtain ratio $a : b : c$		M1	
			Obtain $a:b:c=3:1:-2$, or equivalent		A1	
		0.01.	Obtain equation $3x + y - 2z = 1$, or equivalent		A1	
		OR1:	Substitute for two points, e.g. A and B, and obtain $3b+c=d$ Substitute for another point, e.g. C, to obtain a third eq		B1	
			one unknown entirely from the three equations		M1	
			Obtain two correct equations in three unknowns, e.g. in	n <i>a. b. c</i>	Al	
			Solve to obtain their ratio, e.g. $a : b : c$		M1	
			Obtain $a:b:c=3:1:-2$, $a:c:d=3:-2:1$, $a:c:d=3:-2:1$, b:c:d=-1:-2:1 Obtain equation $3x + y - 2z = 1$, or equivalent	<i>a</i> : <i>b</i> : <i>d</i> =3:1:1	or A1 A1	
		002.		21		
		OR2:	Obtain a vector parallel to the plane, e.g. $\overrightarrow{BC} = 3\mathbf{i} - 3\mathbf{j} + \mathbf{j} + \mathbf{j} + \mathbf{k} + $		B1 M1	
			Obtain two correct components of the product		Al	
			Obtain two correct components of the product Obtain correct answer, e.g. $9i + 3j - 6k$		A1 A1	
			Substitute in $9x + 3y - 6z = d$ to find d		M1	
			Obtain equation $9x + 3y - 6z = 3$, or equivalent		A1	
		OR3:	Obtain a vector parallel to the plane, e.g. $\overrightarrow{AC} = \mathbf{i} + \mathbf{j} + 2$		B1	
			Obtain a second such vector and form correctly a 2-pa the plane	-	M1	
			Obtain a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} + 4\mathbf{k} + \lambda(-2\mathbf{i} + 4\mathbf{j})$	$(-\mathbf{k}) + \mu(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$) A1	
			State three correct equations in x, y, z, λ, μ		A1	
			Eliminate λ and μ		M1	
			Obtain equation $3x + y - 2z = 1$, or equivalent		A1	[6]
	(ii)	Obtain	answer $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, or equivalent		B1	[1]

Page 8	Mark Scheme	Syllabus	Papty
	GCE A LEVEL – October/November 2013	9709	32 Aths
(iii) EITH	<i>ER</i> : Use $\frac{\overrightarrow{OA}.\overrightarrow{OD}}{\left \overrightarrow{OD}\right }$ to find projection <i>ON</i> of <i>OA</i> onto <i>OD</i>		M1
	Obtain $ON = \frac{4}{3}$		A1
	Use Pythagoras in triangle <i>OAN</i> to find <i>AN</i> Obtain the given answer		M1 A1
OR1:	Calculate the vector product of \overrightarrow{OA} and \overrightarrow{OD} Obtain answer $6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$		M1 A1
	Divide the modulus of the vector product by the modulu Obtain the given answer	us of \overrightarrow{OD}	M1 A1
OR2:	Taking general point P of OD to have position vector		rm
	an equation in λ by either equating the scalar product zero, or using Pythagoras in triangle <i>OPA</i> , or setting the	I	
	to zero		M1
	Solve and obtain $\lambda = \frac{4}{9}$		A1
	Carry out method to calculate AP when $\lambda = \frac{4}{9}$		M1
	Obtain the given answer		A1
OR3:	Use a relevant scalar product to find the cosine of <i>AOD</i>		M1
	Obtain $\cos AOD = \frac{4}{9}$ or $\cos ADO = \frac{5}{3\sqrt{10}}$, or equivalent	nt	A1
	Use trig to find the length of the perpendicular Obtain the given answer		M1 A1
OR4:	Use cosine formula in triangle AOD to find cos AOD or		M1
	Obtain $\cos AOD = \frac{8}{18}$ or $\cos ADO = \frac{10}{6\sqrt{10}}$, or equival	ent	A1
	Use trig to find the length of the perpendicular Obtain the given answer		M1 A1 [4]
(i) State	or imply $V = \pi h^3$		B1
	or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = -k\sqrt{h}$		B1
	$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$, or equivalent		M1
	n the given equation		A1 [4]
	M1 is only available if $\frac{dV}{dh}$ is in terms of h and has	been obtained by	a
	t method.] $dV = -$		
[Allow	w B1 for $\frac{dV}{dt} = k\sqrt{h}$ but withhold the final A1 until the polas been justified.]	arity of the consta	int

			mm.n	Nathscioud.com
Page 9	Mark Scheme S	Syllabus	Pap	Mar I
	GCE A LEVEL – October/November 2013	9709	32	athers
	Separate variables and integrate at least one side \int_{-5}^{5}		M1	SCIOUD.CO.
	Obtain terms $\frac{2}{5}h^{\frac{5}{2}}$ and $-At$, or equivalent		A1	SU)
	Use $t = 0, h = H$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and	bt + c	M1	
	Use $t = 60$, $h = 0$ in a solution containing terms of the form $ah^{\frac{3}{2}}$ and	bt + c	M1	
	Obtain a correct solution in any form, e.g. $\frac{2}{5}h^{\frac{5}{2}} = \frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$		A1	
(ii)	Obtain final answer $t = 60 \left(1 - \left(\frac{h}{H} \right)^{\frac{5}{2}} \right)$, or equivalent		A1	[6]

(iii) Substitute
$$h = \frac{1}{2}H$$
 and obtain answer $t = 49.4$ B1 [1]