www.mymathscloud.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			3, 3
Page 2	Mark Scheme: Teachers' version	Syllabus	Pap That Tark
	GCE AS/A LEVEL – October/November 2011	9709	32
			001

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

			7,7, 3
Page 3	Mark Scheme: Teachers' version	Syllabus	Pap
	GCE AS/A LEVEL – October/November 2011	9709	32
The following	g abbreviations may be used in a mark scheme or used	d on the scripts:	SCIOUD.COM

AEF	Any Equivalent Form (of answer is equally acceptable)		
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only – often written by a 'fortuitous' answer		
ISW	Ignore Subsequent Working		
MR	Misread		
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)		
sos	See Other Solution (the candidate makes a better attempt at the same question)		
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)		

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2011	Syllabus 9709	Pap Trains
Rearrange as e	$e^{2x} - e^x - 6 = 0$, or $u^2 - u - 6 = 0$, or equivalent		B1 SCIOLID

- Solve a 3-term quadratic for e^x or for uM1 **A**1 Obtain simplified solution $e^x = 3$ or u = 3Obtain final answer x = 1.10 and no other A₁ [4]
- 2 EITHER: Use chain rule M1obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent A₁ obtain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent **A**1 Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1Obtain final answer $\frac{dy}{dx} = -\cos t$ **A**1 OR: Express y in terms of x and use chain rule M1Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent **A**1 Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent A₁ Express derivative in terms of *t* M1Obtain final answer $\frac{dy}{dx} = -\cos t$
- EITHER: Attempt division by $x^2 x + 1$ reaching a partial quotient of $x^2 + kx$ 3 M1Obtain quotient $x^2 + 4x + 3$ A1 Equate remainder of form lx to zero and solve for a, or equivalent M1Obtain answer a = 1**A**1 Substitute a complex zero of $x^2 - x + 1$ in p(x) and equate to zero OR: M1Obtain a correct equation in a in any unsimplified form A1 Expand terms, use $i^2 = -1$ and solve for a M1Obtain answer a = 1[4] **A**1

A1

[5]

[SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C, or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B. The second M1 is only earned if use of the equation a = B - C is seen or implied.]

- (ii) State answer, e.g. x = -3B1 State answer, e.g. x = -1 and no others B1 [2]
- Separate variables and attempt integration of at least one side 4 M1Obtain term ln(x + 1)**A**1 Obtain term k ln sin 2θ , where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ **A**1

Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, x = 0 in a solution containing terms $a \ln(x + 1)$ and

 $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1√

Rearrange and obtain $x = \sqrt{(2\sin 2\theta)} - 1$, or simple equivalent A1 [7]

					Pap 32	1/2
	Pa	ge 5	Mark Scheme: Teachers' version	Syllabus	Pap	38
			GCE AS/A LEVEL – October/November 2011	9709	32	diffe
5	(i)		ognisable sketch of a relevant graph over the given interval e other relevant graph and justify the given statement		B1 B1	[2]
	(ii)	Consider	the sign of sec $x - (3 - \frac{1}{2}x^2)$ at $x = 1$ and $x = 1.4$, or equival	ent	M1	
			the argument with correct calculated values		A1	[2]
	(iii)	Convert t	the given equation to $\sec x = 3 - \frac{1}{2}x^2$ or work <i>vice versa</i>		B1	[1]
	(iv) Use a correct iterative formula correctly at least once Obtain final answer 1.13 Show sufficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show there is a sign change.		here is a sign change	M1 A1		
			erval (1.125, 1.135) ressive evaluation of the iterative function with $x = 1, 2,$	scores M0.]	A1	[3]
6	(i)	Use trig f	mply $R = \sqrt{10}$ ormulae to find α = 71.57° with no errors seen		B1 M1 A1	[3]
			llow radians in this part. If the only trig error is a sign err	or in $\cos(x - \alpha)$ give		r. 1
	(ii)		$\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (All		В1√	
			an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 18$	0°	M1	
			answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ propriate method to find another value of 2θ in the above range.	nge	A1 M1	
		Obtain se [Ignore and [Treat and	cond angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range asswers outside the given range.] swers in radians as a misread and deduct A1 from the answer use of correct trig formulae to obtain a 3-term quadrater.	rs for the angles.]	A1	[5]
		$\cos 2\theta$, or in the giv	tan 2θ earns M1; then A1 for a correct quadratic, M1 for o en range, and A1 + A1 for the two correct answers (candida spurious roots to get the final A1).]	btaining a value of θ		

					,	
Page 6		Mark Scheme: Teachers' version	Syllabus	Pap	3	
		GCE AS/A LEVEL – October/November 2011	9709	Pap 32		
(i)	Use a com	rect method to express \overrightarrow{OP} in terms of λ		M1		
	Obtain the	e given answer		A1		
(44)			\rightarrow \rightarrow 1	<u>→</u>		
(ii)	ETTHER:	Use correct method to express scalar product of OA and in terms of λ	OP, or OB and OP	<i>OP</i> M1		
		Using the correct method for the moduli, divide scalar pro-	oducts by products			
	OR1:	moduli and express $\cos AOP = \cos BOP$ in terms of λ , or Use correct method to express $OA^2 + OP^2 - AP^2$, or $OB^2 = OP^2 - AP^2$.	in terms of λ and ϵ	<i>OP</i> M1*		
	OIII.	of λ		M1		
		Using the correct method for the moduli, divide each exproduct of the relevant moduli and express $\cos AOP = \cos $				
		or λ and OP	os DOI III terriis o	M1*		
	Ohtain a c	correct equation in any form, e.g. $\frac{9+2\lambda}{2}$	$11+14\lambda$	A1		
	Ootam a C	correct equation in any form, e.g. $\frac{9+2\lambda}{3\sqrt{(9+4\lambda+12\lambda^2)}} = \frac{5\sqrt{(9+2\lambda+12\lambda^2)}}{5\sqrt{(9+2\lambda+12\lambda^2)}} = \frac{1}{5\sqrt{(9+2\lambda+12\lambda^2)}} = \frac{1}{5(9+2\lambda+12$	$9+4\lambda+12\lambda^2)$	711		
	Solve for	λ		M1(dep*)		
	Obtain λ =	$=\frac{3}{8}$		A1		
	[SR: The	M1* can also be earned by equating cos AOP or cos BOP	to a sound attemp	t at		
	_	∂B and obtaining an equation in λ . The exact value of the				
	spurious r	t non-exact working giving a value of λ which rounds to negative root of the quadratic in λ is rejected.]	-			
	[SR: Allow a solution reaching $\lambda = \frac{3}{8}$ after cancelling identical incorrect expressions if					
	OP to scecases.]	ore 4/5. The marking will run M1M1A0M1A1, or M11	M1A1M1A0 in s	uch		

B1

A1

[5]

[1]

(iii) Verify the given statement correctly

Obtain given answer following full and correct working

				· 3, 4
	Page 7	Mark Scheme: Teachers' version	Syllabus	Par Thou Tong
		GCE AS/A LEVEL – October/November 2011	9709	32
9	(i) Use prod	uct rule		M1 SCIONA

- 9 (i) Use product rule
 Obtain correct derivative in any form
 Equate derivative to zero and solve for xObtain answer $x = e^{-\frac{1}{2}}$, or equivalent
 Obtain answer $y = -\frac{1}{2}e^{-1}$, or equivalent
 A1
 [5]
 - (ii) Attempt integration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$ M1*

 Obtain $\frac{1}{3}x^3 \ln x \frac{1}{3} \int x^2 dx$, or equivalent A1

 Integrate again and obtain $\frac{1}{3}x^3 \ln x \frac{1}{9}x^3$, or equivalent A1

 Use limits x = 1 and x = e, having integrated twice M1(dep*)

 Obtain answer $\frac{1}{9}(2e^3 + 1)$, or exact equivalent A1 [5]

[SR: An attempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ scores M1. Then give the first A1 for $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]

- 10 (a) EITHER: Square x + iy and equate real and imaginary parts to 1 and $-2\sqrt{6}$ respectively M1*

 Obtain $x^2 y^2 = 1$ and $2xy = -2\sqrt{6}$ Eliminate one variable and find an equation in the other

 Obtain $x^4 x^2 6 = 0$ or $y^4 + y^2 6 = 0$, or 3-term equivalent

 Obtain answers $\pm (\sqrt{3} i\sqrt{2})$ A1

 [5]

 OR: Denoting $1 2\sqrt{6}i$ by $R \operatorname{cis} \theta$, state, or imply, square roots are $\pm \sqrt{R} \operatorname{cis}(\frac{1}{2}\theta)$ and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$ M1*
 - and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$ M1*

 Obtain $\pm \sqrt{5} (\cos \frac{1}{2}\theta + i \sin \frac{1}{2}\theta)$, and $\cos \theta = \frac{1}{5}$ or $\sin \theta = -\frac{2\sqrt{6}}{5}$ or $\tan \theta = -2\sqrt{6}$ Use correct method to find an exact value of $\cos \frac{1}{2}\theta$ or $\sin \frac{1}{2}\theta$ M1(dep*)
 - Obtain $\cos \frac{1}{2}\theta = \pm \sqrt{\frac{3}{5}}$ and $\sin \frac{1}{2}\theta = \pm \sqrt{\frac{2}{5}}$, or equivalent
 - Obtain answers $\pm (\sqrt{3} i\sqrt{2})$, or equivalent

 [Condone omission of \pm except in the final answers.]
 - (b) Show point representing 3i on a sketch of an Argand diagram

 Show a circle with centre at the point representing 3i and radius 2

 Shade the interior of the circle

 Carry out a complete method for finding the greatest value of arg zObtain answer 131.8° or 2.30 (or 2.3) radians

 [The f.t. is on solutions where the centre is at the point representing -3i.]