

Cambridge International Examinations Cambridge International Advanced Subsidiary Level

MATHEMATICS9709/21Paper 2October/November 2016

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			· //	2
Page 2	Mark Scheme	Syllabus	Piln	O PARTIE
	Cambridge International AS Level – October/November 2016	9709	21	70 0

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			·17.	2
Page 3	Mark Scheme	Syllabus	Pilh	
	Cambridge International AS Level – October/November 2016	9709	21	Ary Or

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

			3, 2
Page 4	Mark Scheme	Syllabus	P. Than dains
	Cambridge International AS Level – October/November 2016	9709	21
		-	

			0,
1 (i)	Carry out method for solving quadratic equation in 3^x Obtain at least $3^x = 7$		John.
	Use logarithms to solve an equation of the form $3^x = k$ where $k > 0$	A1 M1	
	Obtain 1.77	A1	[4]
(ii)	State ±1.77, following positive answer from part (i)	B1√ [^]	[1]
2	State or imply $\ln y = \ln A + px$	B 1	
	Equate gradient of line to p	M1	
	Obtain $p = 0.32$	A1	
	Substitute to find A	M1	
	Obtain $A = 4.81$	A1	
	OR 1:		
	$3.17 = \ln A + 5p \text{ or } 4.77 = \ln A + 10p$	B1	
	Correct attempt to obtain ln A or p	M1	
	Correct attempt to obtain the other unknown	M1	
	Obtain $A = 4.81$	A1	
	Obtain $p = 0.32$	A1	
	OR 2:		
	$e^{3.17} = Ae^{5p}$ or $e^{4.77} = Ae^{10p}$	B1	
	Correct attempt to obtain p	M1	
	Correct attempt to get A	M1	
	Obtain $A = 4.81$	A1	5.53
	Obtain $p = 0.32$	A1	[5]
3	Differentiate to obtain $4\cos 2x + 10\sin 2x$	B 1	
	Equate first derivative to zero and arrange to $\tan 2x =$	*M1	
	Obtain $\tan 2x = -0.4$	A1 DM1	
	Carry out correct method for finding at least one value of x , dependent *M Obtain $x = 1.38$	DM1 A1	
	Obtain $x = 1.38$ Obtain $x = 2.95$ and no others between 0 and π	A1	[6]
			[~]
4 (i)	Integrate to obtain $2e^{2x} + 5x$	B 1	
	Apply limits correctly and equate to 100	M1	
	Rearrange and apply logarithms correctly to reach $a =$	M1	5.13
	Confirm given result $a = \frac{1}{2} \ln(50 + e^{-2a} - 5a)$	A1	[4]
(ii)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 1.854	A1	
	Show sufficient iterations to justify accuracy to 3 dp or show sign change in		F23
	interval (1.8535, 1.8545)	B1	[3]

			23, 32
Page 5	Mark Scheme	Syllabus	Puly
	Cambridge International AS Level – October/November 2016	9709	21 8/1/20 1/3

	T		·0/.
5 (i)	Use $\cos 2x = 2\cos^2 x - 1$ and attempt factorisation of numerator Obtain $(2\cos x + 1)(\cos x + 4)$ Confirm given result $2\cos x + 1$	M1 A1 A1	[3]
(ii)	Express integrand as $2\cos 2x + 1$ Integrate to obtain $\sin 2x + x$ Apply limits correctly to integral of form $k_1 \sin 2x + k_2 x$ Obtain 2π	B1 B1 M1 A1	[4]
6	Differentiate $4xy$ to obtain $4y + 4x \frac{dy}{dx}$ Differentiate y^2 to obtain $2y \frac{dy}{dx}$ Equate attempt of derivative of left-hand side to zero Substitute (1, 3) to find numerical value of derivative Obtain $-\frac{18}{10}$ or $-\frac{9}{5}$ Obtain $\frac{10}{18}$ or $\frac{5}{9}$ as gradient of normal, following their numerical value of derivative Form equation of normal at (1, 3) Obtain $5x - 9y + 22 = 0$ or equivalent of requested form	B1 M1 M1 A1 A1 M1 A1 A1 M1	[8]
7 (i)	Substitute $x = -3$, equate to zero and obtain $27a + 3b = 39$ or equivalent Substitute $x = -2$ and equate to 18 Obtain $8a + 2b = 6$ or equivalent Solve a relevant pair of linear equations for a and b Obtain $a = 2$ and $b = -5$	B1 M1 A1 M1 A1	[5]
(ii) (a)	Attempt division by $x + 3$ at least as far as $2x^2 + kx$ Obtain quotient $2x^2 - 3x + 4$ Calculate discriminant of 3-term quadratic expression, or equivalent Obtain -23 and conclude appropriately	M1 A1 M1 A1	[4]
(b)	State $\cos y = -\frac{1}{3}$ Obtain 109.5, dependent *B Obtain -109.5 and no others between -180 and 180, dependent *B	*B1 B1 DB1	[3]