

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 1
October/November 2018
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

October/Novembe M. M. Marins Cloud, Com

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 14

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 14

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 14

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2018 Page 5 of 14

9709/11	Cambridge International AS/A Le PUBLISHED	Scheme October/Novembe nyme	My Noths Cloud Com	
Question	Answer	Marks	Guidance	COUNTY.
1	$(4x^{1/2} - 3)(x^{1/2} - 2)$ oe soi Alt: $4x + 6 = 11\sqrt{x} \Rightarrow 16x^2 - 73x + 36$	M1	Attempt solution for $x^{1/2}$ or sub $u = x^{1/2}$	COM
	$x^{\frac{1}{2}} = 3/4 \text{ or } 2$ (16x-9)(x-4)	A1	Reasonable solutions for $x^{\frac{1}{2}}$ implies M1 ($x = 2, 3/4$, M1A0)	
	x = 9/16 oe or 4	A1	Little or no working shown scores SCB3, spotting one solution, B0	
		3		

Question	Answer	Marks	Guidance
2	$x^{2} + bx + 5 = x + 1 \rightarrow x^{2} + x(b-1) + 4 = 0$	M1	Eliminate x or y with all terms on side of an equation
	$(b^2 - 4ac =) (b-1)^2 - 16$	M1	
	b associated with $-3 \& +5$ or $b-1$ associated with ± 4	A1	$(x-2)^2 = 0 \text{ or } (x+2)^2 = 0, x = \pm 2, b-1 = \pm 4 \text{ (M1A1)}$ Association can be an equality or an inequality
	$b \geqslant 5, b \leqslant -3$	A1	
		4	

© UCLES 2018 Page 6 of 14

9709/11	Cambridge International AS/A Lev PUBLISHED		Scheme October/Novembe municipal Guidance Guidance Accept –3a/4a Answer must not include a Et on their numerical gradient	1411
Question	Answer	Marks	Guidance	th _{sclo}
3(i)	Gradient of $AB = -3/4$	B1	Accept –3a/4a	-Ud-COM
	$y = -\frac{3}{4}x \text{ oe}$	B1FT	Answer must not include a. Ft on their <u>numerical</u> gradient	
	1	2		
3(ii)	$(4a)^2 + (3a)^2 = (10/3)^2$ soi	M1	May be unsimplified	
'	$25a^2 = 100/9$ oe	A1		
'	a = 2/3	A1		
1		3		

Question	Answer	Marks	Guidance
4(i)	$S_{80} = \frac{80}{2} [12 + 79 \times (-4)] \text{ or } \frac{80}{2} [6 + l], l = -310$	M1A1	Correct formula (M1). Correct <i>a</i> , <i>d</i> and <i>n</i> (A1).
	-12 160	A1	
		3	
4(ii)	$S_{\infty} = \frac{6}{1 - \frac{1}{3}} = 9$	M1A1	Correct formula with $ r < 1$ for M1
		2	

© UCLES 2018 Page 7 of 14

	FUBLISHED		1/20
Question	Answer	Marks	Guidance
5(i)	$\frac{(\cos\theta - 4)(5\cos\theta - 2) - 4\sin^2\theta}{\sin\theta(5\cos\theta - 2)} (=0)$	M1	Accept numerator only
	$\frac{5\cos^2\theta - 22\cos\theta + 8 - 4\left(1 - \cos^2\theta\right)}{\sin\theta(5\cos\theta - 2)} \ (=0)$	M1	Simplify numerator and use $s^2 = 1 - c^2$. Accept numerator only
	$9\cos^2\theta - 22\cos\theta + 4 = 0 \text{ www } \mathbf{AG}$	A1	
		3	
5(ii)	Attempt to solve for $\cos \theta$, (formula, completing square expected)	M1	Expect $\cos \theta = 0.1978$. Allow 2.247 in addition
	θ = 78.6°, 281.4° (only, second solution in the range)	A1A1FT	Ft for (360° – 1st solution)
		3	

© UCLES 2018 Page 8 of 14

9709/11	Cambridge International AS/A PUBLISH		Scheme October/Novembe $\frac{\mathbf{Guidance}}{\mathbf{Guidance}}$ Sub $\frac{dy}{dx} = 0$ and $x = 3$	12 13
Question	Answer	Marks	Guidance	th _{SC/O}
6(i)	$0 = 9a + 3a^2$	M1	Sub $\frac{dy}{dx} = 0$ and $x = 3$, co
	a = -3 only	A1		
		2		
6(ii)	$\frac{dy}{dx} = -3x^2 + 9x \to y = -x^3 + \frac{9x^2}{2} (+c)$	M1A1FT	Attempt integration. $\frac{1}{3}ax^3 + \frac{1}{2}a^2x^2$ scores M1. Ft on their a.	
	$9\frac{1}{2} = -27 + 40\frac{1}{2} + c$	DM1	Sub $x = 3, y = 9\frac{1}{2}$. Dependent on c present	
	c = -4	A1	Expect $y = -x^3 + \frac{9x^2}{2} - 4$	
		4		
6(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -6x + 9$	M1	$2ax + a^2$ scores M1	
	At $x = 3$, $\frac{d^2 y}{dx^2} = -9 < 0$ MAX www	A1	Requires at least one of –9 or < 0. Other methods possible.	
		2		

9709/11	Cambridge International AS/A PUBLISHE		Scheme October/November That It is cloud to co
Question	Answer	Marks	Guidance Guidance
7(i)	$2 = k(8 - 28 + 24) \rightarrow k = 1/2$	B1	add, CO
		1	
7(ii)	When $x = 5$, $y = [\frac{1}{2}](125 - 175 + 60) = 5$	M1	Or solve $[\frac{1}{2}](x^3 - 7x^2 + 12x) = x \Rightarrow x = 5 [x = 0, 2]$
	Which lies on $y = x$, oe	A1	
		2	
7(iii)	$\int \left[\frac{1}{2}(x^3 - 7x^2 + 12x) - x\right] dx.$	M1	Expect $\int \frac{1}{2}x^3 - \frac{7}{2}x^2 + 5x$
	$\frac{1}{8}x^4 - \frac{7}{6}x^3 + \frac{5}{2}x^2$	B2,1,0FT	Ft on their k
	2-28/3+10	DM1	Apply limits $0 \rightarrow 2$
	8/3	A1	
	OR $\frac{1}{8}x^4 - \frac{7}{6}x^3 + 3x^2$	B2,1,0FT	Integrate to find area under curve, Ft on their k
	2 – 28/3 +12	M1	Apply limits $0 \rightarrow 2$. Dep on integration attempted
	Area $\Delta = \frac{1}{2} \times 2 \times 2$ or $\int_{0}^{2} x dx = \left[\frac{1}{2}x^{2}\right] = 2$	M1	
	8/3	A1	
		5	

© UCLES 2018 Page 10 of 14

9709/11	Cambridge International AS/A Le PUBLISHED		Scheme October/November Munitary Munita	12 43 1
Question	Answer	Marks	Guidance	Thsclor
8(i)	$\overrightarrow{DF} = -6\mathbf{i} + 2\mathbf{k}$	B1		Ad. Col
		1		
8(ii)	$\overrightarrow{EF} = -6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$	B1		
	$ \overrightarrow{EF} = \sqrt{\left(-6\right)^2 + \left(-3\right)^2 + 2^2}$	M1	Must use their \overrightarrow{EF}	
	Unit vector = $\frac{1}{7} \left(-6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} \right)$	A1		
		3		
8(iii)	$\overrightarrow{DF}.\overrightarrow{EF} = (-6\mathbf{i} + 2\mathbf{k}).(-6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = 36 + 4 = 40$	M1		
	$ \overrightarrow{DF} = \sqrt{40}, \overrightarrow{EF} = 7$	M1		1
	$\cos EFD = \frac{40}{7\sqrt{40}} \text{ oe}$	M1		
	$EFD = 25.4^{\circ}$	A1	Special case: use of cosine rule M1(must evaluate lengths using correct method) A1 only	
		4		

709/11	09/11 Cambridge International AS/A Level – Mark Scheme October/Novem			
Question	Answer	Marks	Guidance	
9	Angle $OAB = \pi / 2 - \pi / 5 = 3\pi / 10$ soi	B1	Guidance Allow 54° or 0.9425 rads	
	Sector $CAB = \frac{1}{2} \times \left(their \frac{3\pi}{10}\right) \times 5^2$	M1	Expect 11.78	
	$OA = \frac{5}{\sin\frac{\pi}{5}} = 8.507$	M1A1	May be implied by $OC = 3.507$	
	Sector $COD = \frac{1}{2} \times (their 3.507)^2 \times \frac{\pi}{5}$	M1	Expect 3.86	
	$\Delta OAB = \frac{1}{2} \times 5 \times (their 8.507) \sin \frac{3\pi}{10}$	M1	Or $\frac{1}{2} \times 5 \times \frac{5}{\tan \frac{\pi}{5}}$ or $2.5 \times \sqrt{\left(their 8.507\right)^2 - 25}$	
	= 17.20 or 17.21	A1		
	Shaded area $17.20(or17.21) - 11.78 - 3.86 = 1.56$ or 1.57	A1		
		8		

© UCLES 2018 Page 12 of 14

	PUDLISHED		· /20
Question	Answer	Marks	Guidance
10(i)(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[-\frac{1}{2}(4x-3)^{-2}\right] \times \left[4\right]$	B1B1	Can gain this in part (b)(ii)
	When $x = 1$, $m = -2$	B1FT	Ft from their $\frac{dy}{dx}$
	Normal is $y - \frac{1}{2} = \frac{1}{2}(x - 1)$	M1	Line with gradient $-1/m$ and through A
	$y = \frac{1}{2}x$ soi	A1	Can score in part (b)
		5	
10(i)(b)	$\frac{1}{2(4x-3)} = \frac{x}{2} \to 2x(4x-3) = 2 \to (2)(4x^2 - 3x - 1) (= 0)$	M1A1	x/2 seen on RHS of equation can score <i>previous</i> A1
	x = -1/4	A1	Ignore $x = 1$ seen in addition
		3	
10(ii)	Use of chain rule: $\frac{dy}{dt} = (their - 2) \times (\pm) 0.3 = 0.6$	M1A1	Allow +0.3 or -0.3 for M1
		2	

709/11	Cambridge International AS/A PUBLISHE		Scheme October/November m_{n_1} , m_{n_2} , m_{n_3} . Guidance Must be in terms of a . Allow $a < 3$. Allow $a \le 3$
Question	Answer	Marks	Guidance
11(a)(i)	[Greatest value of a is] 3	B1	Must be in terms of a. Allow $a < 3$. Allow $a \le 3$
		1	
11(a)(ii)	Range is $y > -1$	B1	Ft on their a. Accept any equivalent notation
	$y = (x-3)^2 - 1 \rightarrow (x-3)^2 = 1 + y \rightarrow x = 3(\pm)\sqrt{1+y}$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{1+x}$ cao	A1	
		3	
11(b)(i)	$gg(2x) = \left[(2x-3)^2 - 3 \right]^2$	B1	
	$(2x-3)^4 - 6(2x-3)^2 + 9$	B1	
		2	
11(b)(ii)	$ \begin{bmatrix} 16x^4 - 96x^3 + 216x^2 - 216x + 81 \end{bmatrix} + \left[\left(-24x^2 + 72x - 54 \right) + 9 \right] \\ 16x^4 - 96x^3 + 192x^2 - 144x + 36 $	B4,3,2,1,0	
	$16x^4 - 96x^3 + 192x^2 - 144x + 36$		
		4	