

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/13 October/November 2016

www.mymathscloud.com

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Mark Scheme Notes

Marks are of the following three types:

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being guoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or . which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

www.mymathscloud.com Page 3 **Mark Scheme** Syllabus Cambridge International AS/A Level – October/November 2016 9709

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

								mm. m. m
	Ρ	age 4	Mark Scheme				Syllabus	P. Mary Mary
			Cambridge International AS/A Level – October	/Novemb	ber 20	16	9709	13 175 V
1		kx^2-3	$3x = x - k \implies kx^2 - 4x + k(=0)$	M1			minate y and m quad	Mun. Mu hains P. Mainscioud 13 13 13 13 13 13 13 13 13 13
		$(-4)^2$	-4(k)(k) soi	M1			-4ac.	
		<i>k</i> > 2	, $k < -2$ cao Allow $(2, \infty)$ etc. Allow $2 \le k \le -k$	A1	[3]			
		(+/-)	$20 \times 3^3 (x^3), 10a^3 (x^3)$ soi	B1B1		Eac	ch term can	include x^3
		-540 -	$+10a^3 = 100$ oe	M1		Must have 3 terms and inclu a^3 and 100		ms and include
		<i>a</i> = 4		A1	[4]			
5		4sin ² x	$x = 6\cos^2 x \Longrightarrow \tan^2 x = \frac{6}{4}$ or $4\sin^2 x = 6(1 - \sin^2 x)$	M1		Or	$4(1-\cos^2 x)$	$= 6\cos^2 x$
		x = 50.	= $(\pm)1.225$ or $\sin x = (\pm)0.7746$ or $\cos x = (\pm)0.6325$] 8 (Allow 0.886 (rad)) er angle correct	A1 A1√ [^]		Or any other angle correct Ft from 1st angle (Allow radian All 4 angles correct in degrees		le (Allow radians)
			.8°, 129.2°, 230.8°, 309.2° 0.886, 2.25/6, 4.03, 5.40 (rad)]	A1	[4]	7 111	Tungles eo.	neet in degrees
•		~ /	$=3x^2-6x-9$ soi	B1				
			pt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$ soi -3)(x+1) or 3,-1 seen or 3 only seen	M1 A1			th or withou	
		Least j	possible value of <i>n</i> is 3. Accept $n = 3$. Accept $n \ge 3$	A1	[4]		ality/inequa ist be in tern	
	(i)	cos 0.9	$\Theta = OE / 6$ or $= \sin\left(\frac{\pi}{2} - 0.9\right)$ oe	M1		Otł	ner methods	possible
		OE =	6cos 0.9 = 3.73 oe AG	A1	[2]			
	(ii)	Use of	$(2\pi - 1.8)$ or equivalent method	M1		Exj	pect 4.48	
			of large sector $=\frac{1}{2} \times 6^2 \times (2\pi - 1.8)$ oe	M1			$\pi 6^2 - \frac{1}{2} 6^2 1$ pect 12.52	.8. Expect 80.70
			of small sector $\frac{1}{2} \times 3.73^2 \times 1.8$ area = 80.7(0) + 12.5(2) = 93.2	M1 A1	[4]	Otł	ner methods	possible
	(i)	$\frac{2+x}{2}$	$=n \implies x = 2n - 2$ $= -6 \implies y = -12 - m$	B1			MR for (½(<i>m</i> − 6))	2+ <i>n</i>),
		$\frac{m+y}{2}$	$=-6 \implies y=-12-m$	B1	[2]		pect $(2n-2)$	(-12-m)

(ii) S i i i i i i i i i i i i i	$\frac{m+6}{2-n}$ Elimin $m = -9$ AB.AC AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. =	$\frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $\overline{6} \times \sqrt{66} = 11$	<pre>/Novembe M1* B1 DM1 A1A1</pre> B1 B1 B1 M1 A1 M1 A1 B1B1B1	[5] [3] [4]	SyllabusP.16970913139709131497091315970913169709131713181319131013101310101011.0
(i) A (i) A (i) A (ii) A (iii)	$\frac{m+6}{2-n}$ Elimin m = -9 AB.AC AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. = $= \frac{1}{6}\sqrt{6}$	=-1 oe Not nested in an equation ate a variable $p_{1}, n = -1$ C = 3 - 2 - 1 = 0 hence perpendicular or 90° P = 3 + 4 - 7 = 0 hence perpendicular or 90° P = 1 - 8 + 7 = 0 hence perpendicular or 90° AG $BC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$ $\overline{6} \times \sqrt{66} = 11$	B1 DM1 A1A1 B1 B1 B1 M1 A1 M1 A1	[3]	Note: other methods possible 3-2-1 or sum of prods etc must be seen Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(i) A (i) A (i) A (ii) A (iii)	$\frac{m+6}{2-n}$ Elimin m = -9 AB.AC AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. = $= \frac{1}{6}\sqrt{6}$	=-1 oe Not nested in an equation ate a variable $p_{1}, n = -1$ C = 3 - 2 - 1 = 0 hence perpendicular or 90° P = 3 + 4 - 7 = 0 hence perpendicular or 90° P = 1 - 8 + 7 = 0 hence perpendicular or 90° AG $BC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$ $\overline{6} \times \sqrt{66} = 11$	B1 DM1 A1A1 B1 B1 B1 M1 A1 M1 A1	[3]	Note: other methods possible 3-2-1 or sum of prods etc must be seen Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(i) A (i) A (i) A (ii) A (ii) A (ii) ((ii) ((ii) §	Elimin. m = -9 AB.AC AB.AC AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. $=$ $= \frac{1}{6}\sqrt{6}$	the a variable y, n = -1 C = 3 - 2 - 1 = 0 hence perpendicular or 90° P = 3 + 4 - 7 = 0 hence perpendicular or 90° P = 1 - 8 + 7 = 0 hence perpendicular or 90° AG $BC = (\frac{1}{2})\sqrt{3^2 + 1^2 + 1^2} \times \sqrt{1^2 + (-2)^2 + (-1)^2}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $\overline{6} \times \sqrt{66} = 11$	DM1 A1A1 B1 B1 B1 M1 A1 M1 A1	[3]	Note: other methods possible 3-2-1 or sum of prods etc must be seen Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(i) A (i) A (i) A (ii) A (ii) A (ii) ((ii) ((ii) §	Elimin. m = -9 AB.AC AB.AC AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. $=$ $= \frac{1}{6}\sqrt{6}$	the a variable y, n = -1 C = 3 - 2 - 1 = 0 hence perpendicular or 90° P = 3 + 4 - 7 = 0 hence perpendicular or 90° P = 1 - 8 + 7 = 0 hence perpendicular or 90° AG $BC = (\frac{1}{2})\sqrt{3^2 + 1^2 + 1^2} \times \sqrt{1^2 + (-2)^2 + (-1)^2}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $\overline{6} \times \sqrt{66} = 11$	A1A1 B1 B1 B1 M1 A1 M1 A1	[3]	3 - 2 - 1 or sum of prods etc must be seen Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(i) A A A (ii) A (ii) A = V (i) ((ii) ((ii) §	AB.AC AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. $=$ $= \frac{1}{6}\sqrt{6}$	$C = 3 - 2 - 1 = 0 \text{ hence perpendicular or } 90^{\circ}$ $P = 3 + 4 - 7 = 0 \text{ hence perpendicular or } 90^{\circ}$ $P = 1 - 8 + 7 = 0 \text{ hence perpendicular or } 90^{\circ}$ AG $BC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$ $\overline{6} \times \sqrt{66} = 11$	B1 B1 B1 M1 A1 M1 A1	[3]	3 - 2 - 1 or sum of prods etc must be seen Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(ii) A (ii) A = V = (i) ((i) ((ii) §	AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. $=$ $= \frac{1}{6}\sqrt{6}$	$0 = 3 + 4 - 7 = 0 \text{ hence perpendicular or } 90^{\circ}$ $0 = 1 - 8 + 7 = 0 \text{ hence perpendicular or } 90^{\circ} \text{ AG}$ $BC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times \text{their } \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$ $\overline{6} \times \sqrt{66} = 11$	B1 B1 M1 A1 M1 A1	[3]	must be seen Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(ii) A (ii) A = V = (i) ((i) ((ii) §	AB.AI AC.AI Area A $= \frac{1}{2}\sqrt{1}$ Vol. $=$ $= \frac{1}{6}\sqrt{6}$	$0 = 3 + 4 - 7 = 0 \text{ hence perpendicular or } 90^{\circ}$ $0 = 1 - 8 + 7 = 0 \text{ hence perpendicular or } 90^{\circ} \text{ AG}$ $BC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times \text{their } \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$ $\overline{6} \times \sqrt{66} = 11$	B1 B1 M1 A1 M1 A1		must be seen Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(ii) A (ii) A = V = V = V =	AC.AI Area A^{2} $= \frac{1}{2}\sqrt{1}$ Vol. $=$ $= \frac{1}{6}\sqrt{6}$	$D = 1 - 8 + 7 = 0 \text{ hence perpendicular or } 90^{\circ} \text{ AG}$ $BC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times \text{their } \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$ $\overline{6} \times \sqrt{66} = 11$	B1 M1 A1 M1 A1		Or single statement: mutually perpendicular or 90° seen at le once . Expect $\frac{1}{2}\sqrt{66}$
(ii) A = V = (i) ((ii) ((ii) §	Area A $=\frac{1}{2}\sqrt{1}$ Vol. = $=\frac{1}{6}\sqrt{6}$	$BC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$ $\overline{6} \times \sqrt{66} = 11$	M1 A1 M1 A1		once . Expect $\frac{1}{2}\sqrt{66}$
(i) ((ii) ((ii) §	$= \frac{1}{2}\sqrt{1}$ Vol. = $= \frac{1}{6}\sqrt{6}$	$\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $\overline{6} \times \sqrt{66} = 11$	A1 M1 A1		Expect $\frac{1}{2}\sqrt{66}$
(i) ((ii) ((ii) §	$= \frac{1}{2}\sqrt{1}$ Vol. = $= \frac{1}{6}\sqrt{6}$	$\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $\overline{6} \times \sqrt{66} = 11$	A1 M1 A1	[4]	
(i) ((ii) ((ii) §	$= \frac{1}{2}\sqrt{1}$ Vol. = $= \frac{1}{6}\sqrt{6}$	$\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $\overline{6} \times \sqrt{66} = 11$	A1 M1 A1	[4]	
(i) ((ii) ((ii) §	Vol. = $=\frac{1}{6}\sqrt{6}$	$\frac{1}{3} \times their \Delta ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$ $\overline{6} \times \sqrt{66} = 11$	M1 A1	[4]	
(i) ((ii) ((ii) §	$=\frac{1}{6}\sqrt{6}$	$\overline{6} \times \sqrt{66} = 11$	A1	[4]	Not 11.0
(i) (0			[4]	Not 11.0
(ii) §	(2x+3)	$(1)^{2} + 1$ Cannot score retrospectively in (iii)	B1B1B1	[.]	
(ii) §	(2x+3)	$(1)^{2} + 1$ Cannot score retrospectively in (iii)	B1B1B1	1	
) 1 5 ()		[3]	For $a = 2, b = 3, c = 1$
	·····				
(iii)	g(x) =	2x+3 cao	B1	[1]	In (ii),(iii) Allow if from $(2)^2$
(iii)					$4\left(x+\frac{3}{2}\right)^{2}+1$
(iii)		a^{2}			
		$(x+3)^2 + 1 \Rightarrow 2x + 3 = (\pm)\sqrt{y-1}$ or ft from (i)	M1		Or with x/y transposed.
,	$x = (\pm)$	$\frac{1}{2}\sqrt{y-1} - \frac{3}{2}$ or ft from (i)	M1		Or with x/y transposed Allow
($(fg)^{-1}$	$f(x) = \frac{1}{2}\sqrt{x-1} - \frac{3}{2}$ cao Note alt. method $g^{-1}f^{-1}$	A1		sign errors. Must be a function of x . Allow
					=
L	Domai	n is $(x) > 10$	B1	[4]	Allow $(10, \infty)$, $10 < x < \infty$ etc. but not with y or f or g involve
	AIT r	nethod for first 3 marks:			Not ≥10
		to obtain $g^{-1} \left[f^{-1}(x) \right]$	*M1		
		$f_{2}(x-3), f^{-1} = \sqrt{x-1}$	DM1		Both required
	A1 for	· · · ·		1	

					mm y			
	P	age 6 Mark Scheme	Syllabus P. May					
	Cambridge International AS/A Level – October/November 2016 9709 13							
9	(a)	$\frac{6}{1-r} = \frac{12}{1+r}$	M1		Num. Thymains Syllabus P. Mains 16 9709 13 15 Cloud Con			
		$r = \frac{1}{3}$	A1					
		<i>S</i> = 9	A1	[3]				
	(b)	$\frac{13}{2} \Big[2\cos\theta + 12\sin^2\theta \Big] = 52$	M1*		Use of correct formula for sum of AP			
		$2\cos\theta + 12(1 - \cos^2\theta) = 8 \rightarrow 6\cos^2\theta - \cos\theta - 2(=0)$	DM1		Use $s^2 = 1 - c^2$ & simplify to 3-term quad			
		$\cos\theta = 2/3$ or $-1/2$ soi	A1		Accept 0.268 π , $2\pi/3$. SRA1 for			
		$\theta = 0.841$, 2.09 Dep on previous A1	A1A1	[5]	48.2°, 120° Extra solutions in range –1			
10	(i)	at $x = a^2$, $\frac{dy}{dx} = \frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^{-2} + a^{-2} \left(= \frac{3}{a^2} \text{ or } 3a^{-2} \right)$	B1		$\frac{2}{a^2} + \frac{1}{a^2}$ or $2a^{-2} + a^{-2}$ seen			
		$y-3 = \frac{3}{a^2}(x-a^2)$ or $y = \frac{3}{a^2}x + c \to 3 = \frac{3}{a^2}a^2 + c$	M1		anywhere in (i) Through $(a^2,3)$ & with <i>their</i> grad as f(a)			
		$y = \frac{3}{a^2}x \text{or} 3a^{-2}x \text{cao}$	A1	[3]				
	(ii)	$(y) = \frac{2}{a} \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{ax^{-\frac{1}{2}}}{-\frac{1}{2}} (+c)$	B1B1					
		sub $x = a^2$, $y = 3$ into $\int dy / dx$	M1		<i>c</i> must be present. Expect $3 = 4 - 2 + c$			
		$c = 1 (y = \frac{4x^{\frac{1}{2}}}{a} - 2ax^{-\frac{1}{2}} + 1)$	A1	[4]				
	(iii)	sub $x = 16$, $y = 8 \rightarrow 8 = \frac{4}{a} \times 4 - 2a \times \frac{1}{4} + 1$	*M1		Sub into <i>their y</i>			
		$a^{2} + 14a - 32(=0)$ a = 2	A1 A1		Allow –16 in addition			
		$A = (4, 3), B = (16, 8) AB^2 = 12^2 + 5^2 \rightarrow AB = 13$	DM1A1	[5]				

				WWW A M
	Page 7	Mark Scheme	Syllabus P. 47	
	Ŭ	Cambridge International AS/A Level – Octobe	Syllabus P. Unainser er 2016 9709 13 ainser	
11 (i		pt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$	*M1	Must contain $(kx-3)^{-2}$ + other term(s)
		$3)^{2} = 1 \text{ or } k^{3}x^{2} - 6k^{2}x + 8k(=0)$ or $\frac{4}{k}$	DM1 *A1*A1	Simplify to a quadratic Legitimately obtained
	uх	$2k^2(kx-3)^{-3}$	В1√^	Ft must contain $Ak^2(kx-3)^{-3}$ where $A>0$
		$x = \frac{2}{k}, \frac{d^2 y}{dx^2} = (-2k^2) < 0 \qquad \text{MAX All previous}$ $x = \frac{4}{k}, \frac{d^2 y}{dx^2} = (2k^2) > 0 \qquad \text{MIN working correct}$	DB1 DB1	Convincing alt. methods (values either side) must show which values used & cannot use x = 3 / k
				[7]
(ii		τ) $\int \left[(x-3)^{-1} + (x-3) \right]^2 dx$	*M1	Attempt to expand y^2 and then integrate
	$=(\pi)$	$\int [(x-3)^{-2} + (x-3)^{2} + 2] dx$	A1	
	$=(\pi)$	$\left[-(x-3)^{-1}+\frac{(x-3)^3}{3}(+2x)\right]$ Condone missing 2x	A1	Or $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
	$=(\pi)$	$\begin{bmatrix} 1 - \frac{1}{3} + 4 - \left(\frac{1}{3} - 9 + 0\right) \end{bmatrix}$	DM1	$\begin{bmatrix} -(x-3)^{-1} + \frac{x^3}{3} - 3x^2 + 9x + 2x \end{bmatrix}$ Apply limits $0 \rightarrow 2$
	$=40\pi$	/3 oe or 41.9	A1	[5] 2 missing $\rightarrow 28\pi/3$ scores M1A0A1M1A0