MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

WWW. MYMathscloud.com

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			www.n. m
Page 2	Mark Scheme	Syllabus	Pat Mark
	GCE A LEVEL – October/November 2013	9709	13 41/10 15
ark Scheme No	otes		13 thscloud
Marks are of	the following three types:		···Com

Mark Scheme Notes

Marks are of the following three types:

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally • independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on • from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			www.n. m
Page 3	Mark Scheme	Syllabus	Pap nay
	GCE A LEVEL – October/November 2013	9709	
The following	g abbreviations may be used in a mark scheme or use	ed on the scripts:	13 Unscloud.com
AEF Ar	ny Equivalent Form (of answer is equally acceptable)		1

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

						www.m.
	Page 4	Mark Sche			Syllabus	Pap Ing M
		GCE A LEVEL – Octobe	r/Novembe	r 2013	9709	13 Thsc
1	(x+1) (x-2) -1, 2x < -1, x > 2) or other valid method	M1 A1 A1 [3]	Attempt sol Penalise ≤	n of eqn or other $, \geq$	Munu, Mu Mu Pap. 13 method
2	$f(x) = 2x^{-\frac{1}{2}}$		M1A1	-	eg $x^{-\frac{1}{2}}$ or $+x$ no	
	$5 = -2 \times \frac{1}{2} + c = 2$	4+c	M1 A1 [4]	Sub (4, 5).	<i>c</i> must be presen	t
3		of perpendicular = $-\frac{1}{2}$ soi $\frac{1}{2}(x-3)$	B1 B1 [2]			
	(ii) $C = (-9, AC^2 = [3, AC = 13]$	6) - (-9)] ² + $[1 - 6]$ ² (ft on <i>their C</i>)	B1 M1 A1 [3]	soi in (i) or OR $AB^2 = [AB = 26 A AC = 13 A$	$3-(-21)]^2 + [1-1]$	1]² M1
4	(i) $OD = 4i$ CD = 4i	+ 3j + 3j -10k	B1 B1√ [№] [2]	√ for OD –	- 10k	
	$ \mathbf{OD} = 25 = \sqrt{2}$	= 9 + 16 = 25 $\sqrt{25} \text{ or } \mathbf{CD} = \sqrt{125}$ $5 \times \sqrt{125} \times \cos \theta \text{ oe}$ $53.4^{\circ} \text{ (or } 1.11 \text{ rads)}$	M1 M1 M1 A1 [4]		$+ y_1y_2 + z_1z_2$ thod for moduli ed correctly	
5	(a) $\frac{a}{1-r} =$ $r = \frac{7}{8}$ of	$8a \Rightarrow 1(a) = 8(a)(1-r)$	B1 B1 [2]			
	(b) $a + 4d = \frac{10}{2} [2a + d = 14]$	197 $9d$] = 2040	B1 B1 M1A1 [4]	Or $2a + 9d$ Attempt to s	= 408 solve simultaneou	usly
6	(i) sector ar $\frac{1}{2}$	eas are $\frac{1}{2}11^2 \alpha$, $\frac{1}{2}5^2 \alpha$ $11^2 \alpha - \frac{1}{2} \times 5^2 \alpha$	B1	Sight of 11 ²		
		$\frac{11^2 \alpha - \frac{1}{2} \times 5^2 \alpha}{\frac{1}{2} \times 5^2 \alpha}$	M1	Or $\frac{11^2 - 5^2}{5^2}$	_	
	$k = \frac{96}{25}$	or 3.84	A1 [3]			

	Page 5	Mark Sche	me		Syllabus	Party
	1 490 0	GCE A LEVEL – October		r 2013	9709	13 13
		er shaded region= $11\alpha + 5\alpha + 6 + 12$	B1			Pap nymain
		+ 12 er unshaded region = $5\alpha + 5 + 5 =$	B1			
	$5\alpha + 10$ $16\alpha + 12$	$2 = 2 (5\alpha + 10)$	M1			
	$\alpha = 4/3$		A1			
			[4]			
,	(a) $x^2 - 1 =$	$\sin\frac{\pi}{2}$	M1			
	$x = \pm 1$.	5	A1A1 🖍 [3]	✓ for negat	tive of 1 st answer	
	(b) $2\theta + \frac{\pi}{3}$	$=\frac{5\pi}{6}\left(\text{or }\frac{13\pi}{6}\text{or }\frac{\pi}{6}\right)$	B1	1 correct an	igle on RHS is suf	ficient
		$=\left(\text{or } \frac{11\pi}{6} \right)$	M1	Isolating 26	9	
	$\theta = \frac{\pi}{4}, \frac{\pi}{4}$	$\frac{11\pi}{12}$	A1A1 [4]	SC decimal	s 0.785 & 2.88 sc	ores M1B1
8	(i) 81 (x^8)		B1 [1]			
	(ii) 10×3^3 ((x^8) soi leading to their answer	B1B1	B1 for 10, 5	5C2 or 5C3. B1 fc	or 3^3 . But must
	270 (x^8)		B1	be multiplie	ed.	
	()		[3]			
	(iii) k × (i)		M1	k ≠ 1,0		
	405 soi		A1 DM1	. ,		
	+ (ii) 675 (x^8)		A1			
			[4]			
)	$\frac{dy}{dx} = -k^2 (x + $	$(+2)^{-2} + 1 = 0$	M1A1	Attempt dif	ferentiation & set	to zero
	$x + 2 = \pm k$		DM1	Attempt to	solve	
	$x = -2 \pm k$		A1	cao		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2k^2 \left(x\right)$	$(x+2)^{-3}$	M1	Attempt to	differentiate agair	1
			M1	Sub their <i>x</i>	value with k in it	into $\frac{d^2 y}{dx^2}$
		= k, $\frac{d^2 y}{dx^2} = \left(\frac{2}{k}\right)$ which is (> 0) min	A1	-	racketed items ne	
	When $x = -2$	$-k, \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left(\frac{2}{-k}\right)$ which is (< 0)	A1	but $\frac{d^2 y}{dx^2}$ and	d x need to be co	rrect.
	max		[8]			

Pa	ge 6	Mark Sch	eme		Syllabus	Papyn
		GCE A LEVEL – Octob	er/Novembe	er 2013	9709	13 ⁴ th
l0 (i)	Range is ($f(y) \ge c^2 + 4c$	B1	Allow >		Man My
	$x^2 + 4x =$	$(x+2)^2 - 4$	M1	OR $\frac{dy}{dr} = 2$	x + 4 = 0	
	(Smallest	value of c is) -2	A1 [3]	uл	wrong) working §	gets B2
(ii)	5a + b = 1	1	B1			
(11)		4(a+b) = 21	B1			
	(11 - 5a +	$(-a)^2 + 4(11 - 5a + a) = 21$	M1	OR correspo	onding equation in	n b
	(8) $(2a^2 - a^2) = 0$	13a + 18 = (8) (2a - 9) (a - 2)	M1	OR (8) (2 <i>b</i> +	(b-1) = 0	
	$a = \frac{9}{2}, 2$	DR $b = \left(-\frac{23}{2}\right), 1$	A1	A1 for either	r <i>a</i> or <i>b</i> correct. C	condone 2 nd
	2	$\begin{pmatrix} 2 \end{pmatrix}$	A1	value. Spotte	ed solution scores	only B marks.
			[6]			,
Alt.	(ii) Las	st 5 marks				
	f^{-1}	$(x) = \sqrt{x+4} - 2 \qquad B1$		Alt. (ii) Last	4 marks	
	U V	1) = $f^{-1} = (21)$ used M1		(a+b+7)(a+5)(a+b+7)(a	a+b-3)=0	M1A1
	<i>a</i> +	$b = \sqrt{25} - 2 = 3$ A1		(Ignore solut	tion involving a +	- <i>b</i> = -7)
		ve $a + b = 3$, $5a + b = 11$ M1			=3, 5a+b=11	M1
	<i>a</i> =	2, <i>b</i> = 1 A1		a = 2, b = 1		A1
1 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}\right]$	$(x4+4x+4)^{-\frac{1}{2}}] \times [4x^3+4]$	B1B1			
	At $x = 0$,	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{1}{2} \times 4 = (1)$	M1	Sub $x = 0$ an	d attempt eqn of	line following
		$\frac{dx}{dx} = \frac{2}{2}$ is $y - 2 = x$	A1	differentiatio	on.	
			[4]			
(ii)		$\overline{x^4 + 4x + 4} \Longrightarrow (x + 2)^2$	B1	AG www		
	$= x4 + 4x$ $x^2 - x^4 = 0$		B1			
	$x = 0, \pm 1$		B2,1,0			
	-	7	[4]			
(iii)	$(\pi)\left[\frac{x^5}{5}+\right]$		M1A1	Attempt to in	ntegrate y^2	
	$(\pi) \left[0 - \left(- $	$\frac{-1}{5} + 2 - 4 \bigg) \bigg]$	DM1			
	$\frac{11\pi}{5}$ (6.9	1) oe	A1 [4]	Apply limits	$-1 \rightarrow 0$	