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1 Find the coefficient of x3 in the expansion of (2 − 1
2
x)7. [3]

2 It is given that f(x) = 1

x3
− x3, for x > 0. Show that f is a decreasing function. [3]

3 Solve the equation 7 cos x + 5 = 2 sin2 x, for 0◦ ≤ x ≤ 360◦. [4]
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In the diagram, D lies on the side AB of triangle ABC and CD is an arc of a circle with centre A and

radius 2 cm. The line BC is of length 2
√

3 cm and is perpendicular to AC. Find the area of the shaded

region BDC, giving your answer in terms of π and
√

3. [4]

5 The first term of a geometric progression is 51
3

and the fourth term is 21
4
. Find

(i) the common ratio, [3]

(ii) the sum to infinity. [2]

6 The functions f and g are defined for −1
2
π ≤ x ≤ 1

2
π by

f(x) = 1
2
x + 1

6
π,

g(x) = cos x.

Solve the following equations for −1
2
π ≤ x ≤ 1

2
π.

(i) gf(x) = 1, giving your answer in terms of π. [2]

(ii) fg(x) = 1, giving your answers correct to 2 decimal places. [4]
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(i) The diagram shows part of the curve y = 11 − x2 and part of the straight line y = 5 − x meeting at

the point A (p, q), where p and q are positive constants. Find the values of p and q. [3]

(ii) The function f is defined for the domain x ≥ 0 by

f(x) = { 11 − x2 for 0 ≤ x ≤ p,

5 − x for x > p.

Express f−1(x) in a similar way. [5]

8 A curve is such that
dy

dx
= 2(3x + 4)

3
2 − 6x − 8.

(i) Find
d2y

dx2
. [2]

(ii) Verify that the curve has a stationary point when x = −1 and determine its nature. [2]

(iii) It is now given that the stationary point on the curve has coordinates (−1, 5). Find the equation

of the curve. [5]

9 The position vectors of points A and B relative to an origin O are given by

−−→
OA = ( p

1

1

) and
−−→
OB = ( 4

2

p

) ,

where p is a constant.

(i) In the case where OAB is a straight line, state the value of p and find the unit vector in the

direction of
−−→
OA. [3]

(ii) In the case where OA is perpendicular to AB, find the possible values of p. [5]

(iii) In the case where p = 3, the point C is such that OABC is a parallelogram. Find the position

vector of C. [2]
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10 A straight line has equation y = −2x + k, where k is a constant, and a curve has equation y = 2

x − 3
.

(i) Show that the x-coordinates of any points of intersection of the line and curve are given by the

equation 2x2 − (6 + k)x + (2 + 3k) = 0. [1]

(ii) Find the two values of k for which the line is a tangent to the curve. [3]

The two tangents, given by the values of k found in part (ii), touch the curve at points A and B.

(iii) Find the coordinates of A and B and the equation of the line AB. [6]

11

O x

y

ab

y x x= ( – 2)
2

The diagram shows the curve with equation y = x(x − 2)2. The minimum point on the curve has

coordinates (a, 0) and the x-coordinate of the maximum point is b, where a and b are constants.

(i) State the value of a. [1]

(ii) Find the value of b. [4]

(iii) Find the area of the shaded region. [4]

(iv) The gradient,
dy

dx
, of the curve has a minimum value m. Find the value of m. [4]
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