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1 The equation of a curve is such that
dy

dx
= 3√

x
− x. Given that the curve passes through the point (4, 6),

find the equation of the curve. [4]

2 (i) Find, in terms of the non-zero constant k, the first 4 terms in the expansion of (k + x)8 in ascending

powers of x. [3]

(ii) Given that the coefficients of x2 and x3 in this expansion are equal, find the value of k. [2]

3 A progression has a second term of 96 and a fourth term of 54. Find the first term of the progression

in each of the following cases:

(i) the progression is arithmetic, [3]

(ii) the progression is geometric with a positive common ratio. [3]

4 The function f is defined by f : x  → 5 − 3 sin 2x for 0 ≤ x ≤ π.

(i) Find the range of f. [2]

(ii) Sketch the graph of y = f(x). [3]

(iii) State, with a reason, whether f has an inverse. [1]

5 (i) Prove the identity (sin x + cos x)(1 − sin x cos x) ≡ sin3 x + cos3 x. [3]

(ii) Solve the equation (sin x + cos x)(1 − sin x cos x) = 9 sin3 x for 0◦ ≤ x ≤ 360◦. [3]
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In the diagram, OABCDEFG is a cube in which each side has length 6. Unit vectors i, j and k are

parallel to
−−→
OA,

−−→
OC and

−−→
OD respectively. The point P is such that

−−→
AP = 1

3

−−→
AB and the point Q is the

mid-point of DF.

(i) Express each of the vectors
−−→
OQ and

−−→
PQ in terms of i, j and k. [3]

(ii) Find the angle OQP. [4]
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A piece of wire of length 50 cm is bent to form the perimeter of a sector POQ of a circle. The radius

of the circle is r cm and the angle POQ is θ radians (see diagram).

(i) Express θ in terms of r and show that the area, A cm2, of the sector is given by

A = 25r − r
2
. [4]

(ii) Given that r can vary, find the stationary value of A and determine its nature. [4]

8 The function f is such that f(x) = 3

2x + 5
for x ∈ >, x ≠ −2.5.

(i) Obtain an expression for f ′(x) and explain why f is a decreasing function. [3]

(ii) Obtain an expression for f−1(x). [2]

(iii) A curve has the equation y = f(x). Find the volume obtained when the region bounded by the

curve, the coordinate axes and the line x = 2 is rotated through 360◦ about the x-axis. [4]
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The diagram shows a rectangle ABCD. The point A is (0, −2) and C is (12, 14). The diagonal BD is

parallel to the x-axis.

(i) Explain why the y-coordinate of D is 6. [1]

The x-coordinate of D is h.

(ii) Express the gradients of AD and CD in terms of h. [3]

(iii) Calculate the x-coordinates of D and B. [4]

(iv) Calculate the area of the rectangle ABCD. [3]
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(i) The diagram shows the line 2y = x + 5 and the curve y = x2 − 4x + 7, which intersect at the points

A and B. Find

(a) the x-coordinates of A and B, [3]

(b) the equation of the tangent to the curve at B, [3]

(c) the acute angle, in degrees correct to 1 decimal place, between this tangent and the line

2y = x + 5. [3]

(ii) Determine the set of values of k for which the line 2y = x + k does not intersect the curve

y = x2 − 4x + 7. [4]
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