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1 A geometric progression has first term 64 and sum to infinity 256. Find

(i) the common ratio, [2]

(ii) the sum of the first ten terms. [2]

2 Evaluate � 1

0

√(3x + 1) dx. [4]

3 (i) Show that the equation sin2 θ + 3 sin θ cos θ = 4 cos2 θ can be written as a quadratic equation in
tan θ . [2]

(ii) Hence, or otherwise, solve the equation in part (i) for 0◦ ≤ θ ≤ 180◦. [3]

4 Find the coefficient of x3 in the expansion of

(i) (1 + 2x)6, [3]

(ii) (1 − 3x)(1 + 2x)6. [3]

5

In the diagram, OCD is an isosceles triangle with OC = OD = 10 cm and angle COD = 0.8 radians.
The points A and B, on OC and OD respectively, are joined by an arc of a circle with centre O and
radius 6 cm. Find

(i) the area of the shaded region, [3]

(ii) the perimeter of the shaded region. [4]
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6 The curve y = 9 − 6
x

and the line y + x = 8 intersect at two points. Find

(i) the coordinates of the two points, [4]

(ii) the equation of the perpendicular bisector of the line joining the two points. [4]

7

The diagram shows part of the graph of y = 18
x

and the normal to the curve at P (6, 3). This normal

meets the x-axis at R. The point Q on the x-axis and the point S on the curve are such that PQ and SR
are parallel to the y-axis.

(i) Find the equation of the normal at P and show that R is the point (41
2
, 0). [5]

(ii) Show that the volume of the solid obtained when the shaded region PQRS is rotated through
360◦ about the x-axis is 18π. [4]

[Questions 8, 9 and 10 are printed overleaf.]
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8

The diagram shows a glass window consisting of a rectangle of height h m and width 2r m and a
semicircle of radius r m. The perimeter of the window is 8 m.

(i) Express h in terms of r. [2]

(ii) Show that the area of the window, A m2, is given by

A = 8r − 2r2 − 1
2
πr2. [2]

Given that r can vary,

(iii) find the value of r for which A has a stationary value, [4]

(iv) determine whether this stationary value is a maximum or a minimum. [2]

9 Relative to an origin O, the position vectors of the points A, B, C and D are given by

−−→
OA = ( 1

3−1
) ,

−−→
OB = ( 3−1

3
) ,

−−→
OC = ( 4

2
p
) and

−−→
OD = (−1

0
q
) ,

where p and q are constants. Find

(i) the unit vector in the direction of
−−→
AB, [3]

(ii) the value of p for which angle AOC = 90◦, [3]

(iii) the values of q for which the length of
−−→
AD is 7 units. [4]

10 The functions f and g are defined as follows:

f : x → x2 − 2x, x ∈ �,

g : x → 2x + 3, x ∈ �.

(i) Find the set of values of x for which f(x) > 15. [3]

(ii) Find the range of f and state, with a reason, whether f has an inverse. [4]

(iii) Show that the equation gf(x) = 0 has no real solutions. [3]

(iv) Sketch, in a single diagram, the graphs of y = g(x) and y = g−1(x), making clear the relationship
between the graphs. [2]
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