MARK SCHEME for the October/November 2015 series

9231 FURTHER MATHEMATICS

9231/21
Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& Mark Scheme Details \& \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& \\
\hline 1 \& \begin{tabular}{l}
Find 3 independent equations for \(T, R_{A}, R_{B}\) : \\
Resolve horizontally: \\
Resolve vertically: \\
Take moments about \(A\) : \\
(\(a\) may be omitted from moment eqns) \\
Take moments about \(B\) : \\
Take moments about \(C\) : \\
Take moments about \(D\) : \\
Solve for \(T, R_{A}, R_{B}\) (AEF in \(W\) and \(\alpha\)):
\[
\begin{aligned}
\& R_{B}=T \cos \alpha \\
\& R_{A}=W+T \sin \alpha
\end{aligned}
\]
\[
\begin{aligned}
\& R_{B} 3 a \sin \theta=W(3 a / 2) \cos \theta \\
\& +T a(\sin \alpha \cos \theta+\cos \alpha \sin \theta) \\
\& \text { or }+T a \sin (\alpha+\theta) \\
\& \text { or }+T 3 a \cos \theta \sin \alpha
\end{aligned}
\]
\[
\begin{aligned}
\& R_{A} 3 a \cos \theta=W(3 a / 2) \cos \theta \\
\& +T 2 a(\sin \alpha \cos \theta+\cos \alpha \sin \theta) \\
\& \text { or } \quad+T 2 a \sin (\alpha+\theta) \\
\& \text { or } \quad+T 3 a \sin \theta \cos \alpha
\end{aligned}
\]
\[
\begin{aligned}
\& R_{A} a \cos \theta+W(a / 2) \cos \theta \\
\& \quad=R_{B} 2 a \sin \theta
\end{aligned}
\]
\[
\begin{gathered}
R_{A} 3 a \cos \theta-W(3 a / 2) \cos \theta \\
=R_{B} 3 a \sin \theta
\end{gathered}
\] \\
\(T=W / 2 \sin \alpha\) or \(1 / 2 W \operatorname{cosec} \alpha\) \\
\(R_{A}=3 W / 2\) \\
\(R_{B}=W / 2 \tan \alpha\) or \(1 / 2 W \cot \alpha\)
\end{tabular} \& \begin{tabular}{l}
M1 A1
M1 A1 \\
M1 A1 \\
(M1 A1) \\
(M1 A1) \\
(M1 A1) \\
B1
\end{tabular} \& 9 \& 9 \\
\hline 2 \& \begin{tabular}{l}
For \(A \& B\) use conservation of momentum,
\[
\begin{aligned}
\& \text { e.g. }: 2 m v_{A}+m v_{B}=2 m u \\
\& \left(\text { allow } 2 v_{A}+v_{B}=2 u\right. \text {) }
\end{aligned}
\] \\
Use Newton's law of restitution (consistent signs): \(v_{B}-v_{A}=e u\) \\
Combine to find \(v_{A}\) and \(v_{B}\) :
\[
v_{A}=(2-e) u / 3, v_{B}=2(1+e) u / 3
\] \\
Find \(e\) from \(v_{A}=\left|v_{B}{ }^{\prime}\right|\) with \(v_{B}{ }^{\prime}=[-] 0.4 v_{B}\) :
\[
(2-e)=0 \cdot 8(1+e), \quad e=2 / 3
\] \\
EITHER: Equate times in terms of reqd. distance \(x\) :
\[
(d-x) / v_{A}=d / v_{B}+x / v_{B}^{\prime}(\mathrm{AEF})
\] \\
[speeds need not be found:
\[
\left.v_{A}=v_{B}^{\prime}=4 u / 9, v_{B}=10 u / 9\right]
\] \\
Use \(v_{A}=v_{B}{ }^{\prime}=0.4 v_{B}\) to solve for \(x\) :
\[
d-x=0.4 d+x, x=0.3 d
\] \\
OR: \(\quad\) Find dist. moved by \(A\) when \(B\) reaches wall:
\[
d_{A}=\left(d / v_{B}\right) v_{A}=0.4 d
\] \\
Find reqd. distance \(x\) :
\[
x=1 / 2\left(d-d_{A}\right)=0.3 d
\]
\end{tabular} \& \& 4
2

4 \& 10

\hline
\end{tabular}

Page 3	Mark Scheme	Syllabus	$P_{\mathbf{2}} \frac{1}{3}$
	Cambridge International A Level - October/November 2015	9231	21

Page 5 Mark Scheme

Cambridge International A Level - October/November 2015
923121

Question Number	Mark Scheme Details			Part Mark	
6 (i) (ii) (iii)	Find prob. p of head from mean $=2 \times$ variance: Find $\mathrm{P}(X=4)$ (denoting $1-p$ by $q[=1 / 3])$: Find or state $\mathrm{P}(X>4)$: Formulate condition for N : Take logs (any base) to give bound for N : Find $N_{\text {min }}$: $(N<6.29$ or $N=6.29$ earns M2 A0)	$1 / p=2 \times(1-p) / p^{2}, \quad p=2 / 3 \quad \text { A. } \mathbf{G} .$ $\begin{aligned} \mathrm{P}(X & =4)=q^{3} \times p \\ & =2 / 81 \text { or } 0.0247 \end{aligned}$ $\begin{aligned} \mathrm{P}(X & >4)\left[=1-\left(1+q+q^{2}+q^{3}\right) \times p\right. \\ & \left.=1-\left(1-q^{4}\right)\right]=q^{4} \\ & =1 / 81 \text { or } 0.0123 \end{aligned}$ $\begin{aligned} & 1-q^{N}>0.999, \quad\left[(1 / 3)^{N}<0.001\right] \\ & N>\log 0.001 / \log 1 / 3 \\ & N>6.29, \quad N_{\min }=7 \end{aligned}$	M1 A1 B1 M1 A1 M1 M1 A1	2 1 2 3	
	Find $\mathrm{F}(x)$ for $1 \leqslant x \leqslant 4$: Find $\mathrm{G}(y)$ from $Y=X^{2}$ for $1 \leqslant x \leqslant 4$: (result may be stated) Find $g(y)$ for corresponding range of y : Find or state corresponding range of y : Find median value m of Y : Find $\mathrm{E}(Y)$ [or equivalently $\mathrm{E}\left(X^{2}\right)$]:	$\begin{aligned} & \mathrm{F}(x)=\left(x^{3}-1\right) / 63 \\ & \mathrm{G}(y)=\mathrm{P}(Y<y)=\mathrm{P}\left(X^{2}<y\right) \\ & =\mathrm{P}\left(X<y^{1 / 2}\right)=\mathrm{F}\left(y^{1 / 2}\right) \\ & =\left(y^{3 / 2}-1\right) / 63 \\ & \mathrm{~g}(y)=y^{1 / 2} / 42 \text { A.G. } \\ & 1 \leqslant y \leqslant 16 \text { A.G. } \\ & \left(m^{3 / 2}-1\right) / 63=1 / 2 \\ & m=32 \cdot 5^{2 / 3}=10 \cdot 2 \\ & \mathrm{E}(Y)=\int y \mathrm{~g}(y) \mathrm{d} y=\int y^{3 / 2} \mathrm{~d} y / 42 \\ & =\left[y^{5 / 2}\right]_{1}^{16} / 105=1023 / 105 \\ & =341 / 35 \text { or } 9 \cdot 74 \end{aligned}$	M1 A1 A1 B1 M1 A1 M1 A1	5 2 2 2	9

Page 6 Mark Scheme

Cambridge International A Level - October/November 2015
923121

Question Number	Mark Scheme Details	Part Mark
8	Find mean of sample data [for use in Poisson distn.]: $\lambda=220 / 100=2 \cdot 2$ State (at least) null hypothesis (AEF): Find expected values $100 \lambda^{r} \mathrm{e}^{-\lambda / r}$! (to 1 d.p.): (ignore incorrect final value here for M1) $\begin{array}{lll}\text { Combine last two cells so that exp. value } \geqslant 5: & O_{i}: & 3 \\ E_{i}: & 7.25\end{array} \quad$ M1* Calculate value of χ^{2} (to 2 d.p.; A1 dep M1*): (allow 7.95 if $1 \mathrm{~d} . \mathrm{p}$. exp.values used) State or use consistent tabular value (to 3 s.f.): $\quad 5$ cells: $\chi_{3,0.95}{ }^{2}=7.815$ 6 cells: $\chi_{4,0.95}{ }^{2}=9.488$ (correct) 7 cells: $\chi_{5,0.95}{ }^{2}=11.07$ State or imply valid method for conclusion e.g.: Accept H_{0} if $\chi^{2}<$ tabular value Conclusion (AEF, requires both values correct): Distn fits or $\lambda=2 \cdot 2$	10
9	Calculate gradient b_{1} in $y-\bar{y}=b_{1}(x-\bar{x})$: $\begin{aligned} & \begin{aligned} S_{x y} & =24879-472 \times 400 / 8 \\ & =1279 \\ S_{x x} & =29950-472^{2} / 8=2102 \\ b_{1} & =S_{x y} / S_{x x}=0.6085 \text { (3 s.f.) } \end{aligned} \end{aligned}$ M1 A1 Find regression line of y on x : $y=400 / 8+b_{1}(x-472 / 8)$ Find y when $x=72$: Allow use of regression line of x on y (since neither variable clearly independent):	5

Page 7 Mark Scheme

Cambridge International A Level - October/November 2015
923121

Page 8 Mark Scheme

Cambridge International A Level - October/November 2015

