

MARK SCHEME for the October/November 2013 series

9231 FURTHER MATHEMATICS

9231/23

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			mm m
Page 2	Mark Scheme	Syllabus	Pap Page Nath
	GCE A LEVEL – October/November 2013	9231	23 417, 15
Mark Scheme No	<u>ites</u>		23 th scloud com
Marks are of	the following three types:		ion

Mark Scheme Notes

Marks are of the following three types:

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme • specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or ٠ which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			Mun. Mun. Mun. Mun. Pap. No. Mun. Mun. Mun. Mun. Mun. Mun. Mun. Mun
Page 3	Mark Scheme	Syllabus	Pap The Mar
	GCE A LEVEL – October/November 2013	9231	23 41/10 15
The follow	ving abbreviations may be used in a mark scheme or use	ed on the scripts:	23 thscioud.com
AEF	Any Equivalent Form (of answer is equally acceptable)		17

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt[4]{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

					m	N.D.	
	Page 4	Mark Sche		Syllabus	Pa	L'Ma	Math .
		GCE A LEVEL – Octobe	r/November 2013	9231	2	23 40	SC S
Question Number	Mark Scheme	e Details				Part Mark	A ANALIS SCIOLIC COL
1	Find radial co	omponent of acceleration:	$(2 - 2 \times 3 + 3^2)^2 / 0.5 =$	$50 [m s^{-2}]$	M1 A1		
	Find transver	se component of acceleration:	$-2+2 \times 3 = 4 \text{ [m s}^{-2}\text{]}$]	B1	3	3
2	Use conserva	tion of momentum, e.g.:	$4mv_A + \lambda mv_B = 4mu$]	B1		
	Use restitutio eqn.):	n (must be consistent with prev.	$v_A - v_B = -\frac{1}{2} u$]	B1		
	Solve for v_B :		$4(v_B-\frac{1}{2}u)+\lambda v_B=4u$				
	(or verify	eqns are satisfied by this v_B)	$v_B = 6u / (\lambda + 4) \mathbf{A.G.}$]	M1 A1	4	
	Use conserva	tion of momentum, e.g.:	$\lambda m w_B + m w_C = \lambda m v_B$]	B1		
	Use restitutio eqn.):	n (must be consistent with prev.	$w_B - w_C = -\frac{1}{2} v_B$]	B1		
	Eliminate <i>w_B</i> :		$(1+\lambda)w_C = (1+\frac{1}{2})\lambda v_B$]	M1		
	Put $w_C = u$, su	ubstitute for v_B and solve for λ :	$(1+\lambda) = 9\lambda/(\lambda+4)$				
			$\lambda^2 - 4\lambda + 4 = 0, \ \lambda = 2$]	M1 A1	5	9

					m	2.01	4	
	Page 5	Mark Sche		Syllabus	Pa	- MAN	1732	
		GCE A LEVEL – Octobe	er/November 2013	9231	2	<u>3</u>	SCI IS	
3	Equate radial either):	l forces at A and B (M1 for	$T - mg\cos\theta = mv_A^2/a$		M1 A1		My Mains Cioud.con.	2
	entiter).		$T/8 + mg\sin\theta = mv_B^2/a$	7	A1			
	Find 2 energ	y eqns (M1 for either), e.g.:	$\frac{1}{2}mv_{A}^{2} = \frac{1}{2}mu^{2} - mga(1)$	$1 - \cos \theta$)	M1 A1			
			$\frac{1}{2}mv_B^2 = \frac{1}{2}mu^2 - mga(1)$	$1 + \sin \theta$)	A1			
	Find <i>u</i> by e.g	g, first eliminating <i>T</i> :	$mv_A^2/a + mg\cos\theta =$					
			$8 m v_B^2 / a - 8$	$mg\sin\theta$				
			$v_A^2 = 8v_B^2 - 8ga(4/5) - ga(4/5) - ga(4/5$	ga(3/5)				
			$=8v_B^2-7ga$		M1			
	an	d then finding one of v_A^2 or v_B^2 :	$\frac{1}{2}mv_{A}^{2} = \frac{1}{2}mv_{B}^{2}$					
			$+ mga(\cos \theta)$	$+\sin\theta$)				
			$v_A^2 = v_B^2 + (14/5) ga$					
			$v_A^2 = (21/5)ga \text{ or } v_B^2 = (21/5)ga $	(7/5)ga	M1			
	Hence <i>u</i> :		$u^2 = v_A^2 + (4/5)ga$					
			or $v_B^2 + (18/2)^2$	5)ga				
			$=5ga, u=\sqrt{(5ga)}$		A1	9	9	

						my	v	4
		Page 6	Mark Sch		Syllabus	Pa	- nyma	Math S
			GCE A LEVEL – Octobe	er/November 2013	9231	2	3	35010 5
4		Resolve verti modulus λ :	ically at equilibrium with	$\lambda a / 4a = mg [\lambda = 4mg]$]	M1 A1		MUNSCIOUS COM
		Use Newton'	's Law at general point:	$m \mathrm{d}^2 x/\mathrm{d}t^2 = mg - \lambda (a + x)$	-x)/4a		l	
				$[or - mg + \lambda (a-x)]$)/4 <i>a</i>]	M1 A1	l	
		Simplify to g	give standard SHM eqn:	$\mathrm{d}^2 x/\mathrm{d}t^2 = -\left(g/a\right)x$		A1 (B1)	1	
		S.R.: Stating (max 4/6):	this without derivation				6	
		Find period 7	$T = 2\pi/\omega$ with $\omega = \sqrt{(g/a)}$:	$T = 2\pi/\sqrt{(g/a)} \text{ or } 2\pi\sqrt{(a)}$	<i>a/g</i>)	B1	l	
		Equate speed speed:	d at <i>P</i> to one-half maximum	$\omega^2 (A^2 - x^2) = \frac{1}{4} \omega^2 A^2,$		M1 A1		
		Find x^2 :		$x^2 = \frac{3}{4} A^2 = \frac{3}{4} (\frac{1}{2} a)^2 [=$	$= 3a^2/16$]	A1	4	
		Find <i>OP</i> :		$OP = (5 \pm \frac{1}{4}\sqrt{3}) a$ (A.E.	E.F.)	A1	L	10
5	(i)	Find R_P by e.	.g. moments about Q for disc:	$R_P r \cos 60^\circ = W r \sin 60^\circ$	60°	M1 A1		
				$R_P = W \tan 60^\circ = \sqrt{3} W$	7 A.G.	A1	3	
	(ii)	Find R_Q by re	esolving vertically for disc:	$R_Q \cos 60^\circ = W, R_Q = 2$	2 <i>W</i>	B1	3	
		Find R_B by e.	.g. moments about <i>A</i> for <i>AB</i> :	$R_B 3a \sin 60^\circ$			l	
				$=2W(3a/2)\cos 60^\circ$	$^{\circ} + R_Q a$	M1 A1	l	
				$R_B = W(3/2 + 2) / (3\sqrt{3}/2)$	/2)		l	
				$= (7\sqrt{3} / 9) W A.G.$		A1	4	
		Resolve horiz	zontally and vertically for rod	$X_A = R_B - R_Q \sin 60^\circ$		M1	l	
		(M1 for	either)	$= -(2\sqrt{3}/9) W$		A1	l	
		(or	r for rod and disc):	$Y_A = 2W + R_Q \cos 60^\circ =$	= 3W	A1	1	
		Find magnitu	ude <i>R</i> of reaction at <i>A</i> :	$R = \sqrt{(4 \times 3/81 + 9)} W$		M1	1	
				$=\sqrt{(247/27)} W = 3.02$	02 W	A1	5	12

					m	2.0	
	Page 7	Mark Schen GCE A LEVEL – October/		Syllabus 9231	Pa 2		M NSERS SCIOUD.COTT
6	State or find	d E(<i>T</i>):	E(T) = 1/0.2 = 5		B1	1	oud.con
	State or find	d distribution function of <i>T</i> :	$\mathbf{F}(t) = 1 - \exp\left(-0.2t\right)$	(<i>t</i> ù 0)	B1		
			= 0 (otherwise of	r t < 0)	B1		
	Find $P(T >$	10):	P(T > 10) = 1 - F(10)	$) = 1 - (1 - e^{-2})$	M1		
			$= e^{-2} or 0.1$	135	A1	4	5
7	Find Σ (<i>x</i> –	$\overline{x})^2$:	$\Sigma (x - \overline{x})^2 = 25 - 10^2$	/n	B1		
	Find Σ (<i>y</i> –	\overline{y}) ² :	$\Sigma (y - \overline{y})^2 = 43.5 - 13$	$5^{2}/2n$	B1		
	Equate pool	Equate pooled estimate of σ^2 to 2:		$(25 - 10^2/n + 43.5 - 15^2/2n)/$			
			(3n-2) = 2		M1 A1		
	Rearrange t	o give quadratic eqn for <i>n</i> :	$12n^2 - 145n + 425 =$	M1			
	Find <i>n</i> (integer value):		$n = (145 \pm 25)/24 = 5 \ (\neq 7.08)$		M1 A1	7	7
8	Find value	of p for binomial dist.:	mean = 150/100, <i>p</i> =	$1.5/6 = \frac{1}{4}$	M1 A1		
	State (at lea	st) null hypothesis:	$H_0: B(6, p)$ fits data ((A.E.F.)	B1		
	Find expect	Find expected binomial values (to 1 d.p.):		3.18 3.30 0.44 0	.02 M1 A1		
	Combine la	st four cells since exp. value < 5:	<i>O</i> : 11 43 35 11				
			<i>E</i> : 17·80 35·60 29·66 16·94		*M1		
	Calculate va	Calculate value of χ^2 (to 2 d.p.; A1 dep *M1):		96 + 2.08			
		State or use consistent tabular value (to 2 d n):		1 d.p.)	M1 *A1		
				s combined)	*B1		
	d.p.):		$[\chi_{3, 0.95}^2 = 7.815, \chi_{4, 0}]$	$_{0.95}^{2} = 9.488$]			
	Correct con	clusion (A.E.F., dep *A1, *B1):	$\chi^2 > 5.99$ so distn. do	bes not fit	B1	10	10

					m	2.0	4
	Page 8	Mark Schen	ne	Syllabus	Pa	L'M	Mary Contraction
		GCE A LEVEL – October/	November 2013	9231	2	<u>.3 914</u>	5.
9	Calculate s	sample mean:	$\overline{x} = 94.5 / 9 = 10.5$		M1		AN NSCIOLICON
	Estimate p	opulation variance:	$s^2 = (993 \cdot 6 - 94 \cdot 5^2 / 9)$) / 8			
	(al	llow biased here: $0.15 \text{ or } 0.3873^2$)	= 0.16875 or 0.410)8 ²	M1	 	
	State hypo	theses (A.E.F.):	$H_0: \mu = 10.2, H_1: \mu \neq 1$	10.2	B1	 	
	Calculate v	value of t (to 3 s.f.):	$t = (\bar{x} - 10.2)/(s/\sqrt{9})$	= 2.19	M1 *A1		
	State or us	e correct tabular <i>t</i> value (to 3 s.f.):	$t_{8, 0.975} = 2.306$		*B1	 	
	(or can cor	mpare \bar{x} with $10.2 + 0.316 = 10.52$)	,				
	Correct cor	nclusion (AEF, dep *A1, *B1):	Population mean is 10	0.2	B1	7	
		dence interval place of <i>t</i>) e.g.:	$10.5 \pm t \sqrt{\frac{1.35}{8 \times 9}}$))}	M1		
	Use of corr	rect tabular value:	$t_{8, 0.95} = 1.86[0]$		A1		
	Evaluate C	C.I. correct to 3 s.f.:	$10.5 \pm 0.255 \text{ or } [10.2,$, 10.8]	A1	3	10

					mm	y. n. 1	4
F	Page 9	Mark Sche		Syllabus	Pa	- Mar	Math (
		GCE A LEVEL – October	/November 2013	9231	2	3	SC/C
10	Find correl	lation coefficient r:	$r = (24 \cdot 25 - 7 \cdot 5 \times 38 \cdot 1)$ $\sqrt{(4 \cdot 73 - 7 \cdot 5^2/12)} (12)$)} M1 A1		MA NSHS
	(A0 if only	y 3 s.f. used)	$= 0.125 / \sqrt{(0.0425 \times 0)}$	0.6767)		I	
			$= 0.125 / (0.2062 \times 0.000)$	·8226)		I	
			$[or \ 0.01042 \ / \ \sqrt{(0.003)}]$	542 × 0·05639)		I	
			= 0.01042 / (0.05951	× 0·2375)]		I	
			= 0.737		*A1	3	
	Calculate §	gradient b in $y - \overline{y} = b(x - \overline{x})$:	b = 0.125 / 0.0425 = 2	2.94[1]	B1	I	
	Find regree	ssion line of y on x (A.E.F.):	y = 38.6/12 + 2.94 (x -	- 7.5/12)	M1	I	
	(allow	v use of x on y)	= 3.21[7] + 2.94 (x - 0)	0.625)		I	
			<i>or</i> $1.38 + 2.94x$		A1	I	
	Find y whe	en x = 0.64:	y = 3.26 [kg]		B1	4	
	State both	hypotheses:	$H_0: \rho = 0, H_1: \rho \neq 0$		B1	I	
	State or us	e correct tabular two-tail r value:	$r_{12, 2\%} = 0.658$		*B1	I	
	Valid meth	nod for reaching conclusion:	Reject H_0 if $ r > tabul$	lar value	M1	I	
	Correct cor	nclusion (AEF, dep *A1, *B1):	There is non-zero corre	elation	A1	4	11

						mm		4
	P	age 10	Mark Scher		Syllabus	Pa	- Mn	Mary S
		GCE A LEVEL – Octobe		/November 2013	9231	2	3 47	S. S.
11	(a) (i)	State or find	d MI of rod <i>AB</i> about <i>C</i> :	$I_{AB} = \frac{1}{3} 4m(3a)^2 + 4ma$	$(7a)^2$	M1 A1		My Nains Cloud com
				$[=208 ma^2]$				
		Find MI of	disc about C:	$I_{disc} = \frac{1}{2} 8m(2a)^2 + 8m$	$n(2a)^2$	M1 A1		
				$[=48ma^2]$				
		Find MI of	body about C:	$I = I_{AB} + I_{disc} = 256 ma^2$	2	A1		
		Use eqn of	circular motion to find $d^2\theta/dt^2$:	$I \mathrm{d}^2\theta/\mathrm{d}t^2 = [-] (4 \times 7 +$, 0	9 M1 A1		
		Approxima	te sin θ by θ and substitute for <i>I</i> :	$\mathrm{d}^2\theta/\mathrm{d}t^2 = -\left(11g/64a\right)$	θ	A1		
		Find period	$T = 2\pi/\omega$ with $\omega = \sqrt{(11g/64a)}$:	$T = 16\pi \sqrt{(a/11g)} \mathbf{A.G}$	•	B1	9	
	(ii)	Use energy	to find max. ang. vel. ω :	$\frac{1}{2}I\omega^2 = 4mg \ 7a \ (1 - c)$	os θ)			
				+ 8mg 2a (1 –	$\cos \theta$)	M1 A1		
		Substitute f	for <i>I</i> and $\cos \theta$ and simplify:	$\omega^2 = 2 (11 mga) 0.4 / ($	$(256ma^2)$			
				= 11g / 80a		A1		
		Find maxim	num speed of A (A.E.F.):	$v_A = 10a\omega = \sqrt{(55ga/4)}$	ŀ)	M1 A1	5	14

					Mun Man Pap 23	4
	Page 11	Mark Sch GCE A LEVEL – Octob		Syllabus 9231	Papma	Maths)
l		GCE A LEVEL - Octob	er/November 2013	9231		ISC/O.
11 ()	b) Find F(.	x) for $0 < x < 60$ by integration:	$F(x) = \frac{1}{3} (x - 20)^3 / 2400$)0		-ud.com
			$+ \frac{1}{3} 20^{3}/2400$	00 N	<i>A</i> 1	
			$=(x-20)^3/72000$) + 1/9 A	A1	
	State F((x) for other values of x:	$F(x) = 0 \ (x \le 0), \ 1 \ (x \ge 0)$	60) B	31	
	Find G((<i>t</i>) for $0 < t < 60$ from $X + T = 60$:	$\mathbf{G}(t) = \mathbf{P}(T < t)$			
			$= \mathbf{P}(60 - X < t)$			
			$= \mathbf{P}(X > 60 - t)$			
			= 1 - F(60 - t)			
			$= 8/9 - (40 - t)^3 / 72000$) A.G. N	A1 A1 5	
	Formula	ate eqn for median <i>m</i> of <i>T</i> :	$8/9 - (40 - m)^3 / 72000$	$= \frac{1}{2}$ N	/ 11	
	Find va	lue of <i>m</i> :	$(40-m)^3 = (8/9 - \frac{1}{2}) 7$	2000		
			= 28000	Ν	/11	
			$m = 40 - 28000^{1/3} = 9.6$	53 A	A1	
	Find g(a	<i>t</i>) for $0 < t < 60$:	$g(t) = (40 - t)^2 / 24000$	Ν	/11 A1	
	Find E(<i>T</i>) from $\int t g(t) dt$:	$E(T) = \int (40^2 t - 80t^2 + t^3)$	dt / 24000 N	<i>/</i> 11	
			$= [\frac{1}{2} 40^2 t^2 - \frac{1}{3} 80t^3 + \frac{1}{2}$	$(4t^4]_0^{60}/24000$ A	A1	
			= 120 - 240 + 135 = 15	5 A	A1 9	14