

Cambridge Assessment International Education Cambridge International Advanced Level

9231/13 October/November 2018

WWW. MYMathscloud.com

Paper 1 MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge International A Level – Mark Scheme PUBLISHED

Generic Marking Principles

October/Novembe "". Mymainscioud.com These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a guestion. Each guestion paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question •
- the specific skills defined in the mark scheme or in the generic level descriptors for the question •
- the standard of response required by a candidate as exemplified by the standardisation scripts. .

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the . scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do •
- marks are not deducted for errors .
- marks are not deducted for omissions .
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . guestion as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

October/Novembe ""Mynainscioud.com Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Mynyns

Question	Answer	Marks	Guidance Ruidance
1(i)	EITHER: $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{vmatrix} = 36 - 10 - 3 \times 9 = -1 \neq 0$	M1 A1	Guidance Guidance Calculates determinant
	<i>OR:</i> $\alpha + 2\beta + 3\gamma = 0$ $2\alpha + 9\beta + 3\gamma = 0 \implies 2\beta - \gamma = 0$	(M1A1)	Solves homogeneous system of equations.
	$\alpha +4\gamma = 0$ $9\beta - 5\gamma = 0$ $\Rightarrow \beta = 0 \Rightarrow \alpha = \gamma = 0$		Eliminates one variable.
	Therefore $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent (and span \mathbb{R}^3) so form a basis for \mathbb{R}^3 .	A1	States either that vectors are linearly independent or that vectors span \mathbb{R}^3 .
		3	
1(ii)	l = l = m = -1 and m = 1.	M1	Sets up system of equations.
	\Rightarrow d = c - b - a	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Myman

Question	Answer	Marks	Guidance	í.
2(i)	$\alpha + 2\alpha + 4\alpha = -p$	B1	Sum of roots.	ins four com
	$2\alpha^2 + 4\alpha^2 + 8\alpha^2 = q$	B1	Sum of products in pairs.	
	$\frac{14\alpha^2}{7\alpha} = -\frac{q}{p}$	M1	Combines equations.	
	$\Rightarrow 2p\alpha + q = 0$	A1	Verifies result (AG).	
		4		
2(ii)	$8\alpha^3 = -r$	B1	Product of roots.	
	$\Rightarrow r = \frac{q^3}{p^3} \Rightarrow p^3 r - q^3 = 0$	B1	Verifies result (AG).	
		2		

Cambridge International A Level – Mark Scheme PUBLISHED

October/November

Question	Answer	Marks	Guidance	N 5
3(i)	$u_1 < 3$ (given)	B1	States base case.	chs ?loud.com
	Assume that $u_k < 3$	B1	States inductive hypothesis.	
	Then $3 - u_{k+1} = 3 - \frac{4u_k + 9}{u_k + 4} = \frac{-u_k + 3}{u_k + 4} > 0 \implies u_{k+1} < 3$	M1 A1		
	Hence, by induction, $u_n < 3$ for all $n \ge 1$.	B1	States conclusion.	
		5		
3(ii)	$u_{n+1} - u_n = \frac{4u_n + 9}{u_n + 4} - u_n = \frac{-u_n^2 + 9}{u_n + 4}$	M1 A1	Considers $u_{n+1} - u_n$.	
	So $u_n < 3 \Longrightarrow u_{n+1} - u_n > 0$.	B1	Uses $u_n < 3$	
		3		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Mynyns

Question	Answer	Marks	Guidance	2003 - C
4(i)	$\frac{dx}{dt} = 1 - \cos 2t$ $\frac{dy}{dt} = 2\sin t \cos t$	B1	B1 for $\frac{dx}{dt}$ and $\frac{dy}{dt}$.	ANG SIOUS COM
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - \cos 2t = 2\sin^2 t$	M1	Uses an appropriate identity.	
	$\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} = \sqrt{4\sin^4 t + 4\sin^2 t \cos^2 t} = 2\sin t$	A1		
	$S = 2\pi \int_{0}^{\pi} (\sin^2 t) (2\sin t) dt \Longrightarrow a = 4$	M1 A1	Uses the correct formula for S	
		5		
4(ii)	$S = 4\pi \int_{0}^{\pi} \sin^{3} t dt = \pi \int_{0}^{\pi} 3\sin t - \sin 3t dt$	M1	Uses the result $4\sin^3 t = 3\sin t - \sin 3t$	
	$=\pi \left[-3\cos t + \frac{1}{3}\cos 3t\right]_0^{\pi}$	A1		
	$=\pi\left(3 - \frac{1}{3} - \left(-3 + \frac{1}{3}\right)\right) = \frac{16\pi}{3}$	A1	Answer must be exact.	
		3		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe myma

Question	Answer	Marks	Guidance	SC/O.
5(i)	$Ae = \lambda e \text{ and } Be = \mu e \implies Ae + Be = \lambda e + \mu e$	M1	Adds equations.	SCIOUD.CO
	$\Rightarrow (\mathbf{A} + \mathbf{B})\mathbf{e} = (\lambda + \mu)\mathbf{e}$	A1		
		2		
5(ii)	$ \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} $	M1	Multiples matrix with vector.	
	$\Rightarrow \lambda = 3k$	A1	Finds one eigenvalue.	
	$\lambda = 1, 2$	A1	Finds other two.	
		3		
5(iii)	$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 1 \\ 1 & -1 & 0 \end{pmatrix}$	B1		
	$\mathbf{D} = \begin{pmatrix} 7^3 & 0 & 0 \\ 0 & 6^3 & 0 \\ 0 & 0 & 3^3 \end{pmatrix} = \begin{pmatrix} 343 & 0 & 0 \\ 0 & 216 & 0 \\ 0 & 0 & 27 \end{pmatrix}$	M1 A1	Or correctly matched permutations of columns.	
		3		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Mynyns

Question	Answer	Marks	Guidance	SSC/O
6(i)	Vertical asymptote is $x = -1$.	B1		the scioud com
	$x^{2} + ax - 1 = (x+1)(x+a-1) - a$ or $x+1)x^{2} + ax - 1$	M1	By inspection or long division.	
	· · · · · · · · · · · · · · · · · · ·			_
	Thus the oblique asymptote is $y = x + a - 1$	A1 3		_
6(ii)	$a^2 + 4 > 0$	B1		-
		1		
6(iii)	$\frac{(x+1)(2x+a) - (x^2 + ax - 1)}{(x+1)^2} = 0 \Longrightarrow x^2 + 2x + a + 1 = 0$	M1		
	Discriminant $= 4 - 4(a+1) < 0$			
	Therefore there are no stationary points on C.	A1		
		2		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Mynyns

Question	Answer	Marks	Guidance	SSCIO,
6(iv)	x	B1	Correct <i>y</i> -intercept and asymptotes drawn.	as scioud.com
		B1 B1	Each branch correct	
		3		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe myma

Question	Answer	Marks	Guidance	SCIO,
7(i)	Write $c = \cos\theta$, $s = \sin\theta$. $\cos 8\theta + i \sin 8\theta = (c + is)^8$	M1	Uses binomial theorem.	scioud.com
	$\Rightarrow \sin 8\theta = 8c^7s - 56c^5s^3 + 56c^3s^5 - 8cs^7$	A1		
	$=8cs(c^{6}-7c^{4}s^{2}+7c^{2}s^{4}-s^{6})$	M1	Factorises.	
	$c^{6} - 7c^{4}s^{2} + 7c^{2}s^{4} - s^{6} = (1 - s^{2})^{3} - 7(1 - s^{2})^{2}s^{2} + 7(1 - s^{2})s^{4} - s^{6}$	M1	Uses $c^2 = 1 - s^2$.	
	$= (1 - 3s^{2} + 3s^{4} - s^{6}) - 7(s^{2} - 2s^{4} + s^{6}) + 7(s^{4} - s^{6}) - s^{6}$ = 1 - 10s ² + 24s ⁴ - 16s ⁶	A1		
	$\Rightarrow \sin 8\theta = 8cs \left(1 - 10s^2 + 24s^4 - 16s^6\right)$	A1	AG	
		6		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe nyna

Question	Answer	Marks	Guidance Strisclo	ns
7(ii)	$\sin 2\theta = 2cs \Longrightarrow \frac{\sin 8\theta}{\sin 2\theta} = 4\left(1 - 10s^2 + 24s^4 - 16s^6\right)$	M1	GuidanceStitsUses $\sin 2\theta = 2cs$ to relate with equation in part (i)	ud.com
	$\sin 8\theta = 0 \Longrightarrow \theta = \frac{n\pi}{8}$	M1	Solves $\sin 8\theta = 0$	
	$x = \sin\frac{\pi}{8}$	A1	Gives one correct solution	
	$\sin\frac{n\pi}{8}, n = \pm 1, \pm 2 \pm 3 \text{ or } 1, 2, 3, 9, 10, 11$	A1	Gives five other solutions. Allow different values of k as long as six distinct solutions are found. $\sin 0$ and $\sin \frac{\pi}{2}$ must be excluded.	
		4		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe myma

Question	Answer	Marks	Guidance Guidance
8(i)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = -\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}$	M1	Guidance Taths Finds normal to Π_1 . Image: Constraint of the second
	-x + 8y - 4z = 3	M1 A1	Uses point on plane to find cartesian equation, AEF.
		3	
8(ii)	$\begin{pmatrix} -1\\8\\-4 \end{pmatrix} \cdot \begin{pmatrix} 3\\1\\-1 \end{pmatrix} = 9\sqrt{11}\cos\theta$	M1	Uses scalar product.
	$\Rightarrow \theta = 72.5^{\circ}$	A1	Accept 1.26 rad.
		2	
8(iii)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 1 & -1 \\ -1 & 8 & -4 \end{vmatrix} = 4\mathbf{i} + 13\mathbf{j} + 25\mathbf{k}$	M1 A1	Finds direction of line of intersection.
	Point on both planes is, e.g. (1,1,1).	M1 A1	Finds point common to both planes.
	$\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda (4\mathbf{i} + 13\mathbf{j} + 25\mathbf{k})$	A1	States vector equation of line.
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Mynyns

Question	Answer	Marks	Guidance	SCING
9(i)	$\frac{25}{2}\int_{0.01}^{\frac{\pi}{2}}\cot\theta\mathrm{d}\theta$		Uses $\frac{1}{2} \int r^2 d\theta$.	sscloud.com
	$=\frac{25}{2}\left[\ln\sin\theta\right]_{0.01}^{\frac{\pi}{2}}$	A1		
	$=-\frac{25}{2}\ln\sin 0.01 \approx 57.6$	A1		
		3		
9(ii)	$y = 5\cos^{\frac{1}{2}}\theta\sin^{\frac{1}{2}}\theta = \frac{5}{\sqrt{2}}\sin^{\frac{1}{2}}2\theta$	M1	Uses $y = r \sin \theta$.	
	$\theta = 0.01 \Longrightarrow y \approx 0.5$	A1		
		2]
9(iii)	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \frac{5}{\sqrt{2}} \sin^{-\frac{1}{2}} 2\theta \cos 2\theta = 0 \text{ or } \max(\sin 2\theta) = 1$	M1 A1	Sets $\frac{dy}{d\theta} = 0$ or considers max (AEF).	
	$\Rightarrow y = \frac{5\sqrt{2}}{2} (=3.54)$	A1		
		3		

Cambridge International A Level – Mark Scheme PUBLISHED

October/November

THIS

Question	Answer	Marks	Guidance	SC/O
9(iv)		B1	Intersecting the initial line only when $x = 0$ and $y = 0$.	scioud.com
		B 1	Correct shape.	
		2		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe myma

Question	Answer	Marks	Guidance	thscio.
10(i)	$m^2 + 2m + 10 = 0 \implies m = -1 \pm 3i.$	M1	Finds complementary function.	nathsciouc
	$x = e^{-t} \left(A \cos 3t + B \sin 3t \right)$	A1		
	$x = p\cos 3t + q\sin 3t$	M1	Finds particular integral.	
	$\Rightarrow \dot{x} = -3p\sin 3t + 3q\cos 3t \Rightarrow \ddot{x} = -9p\cos 3t - 9q\sin 3t$	A1		
	$(p+6q)\cos 3t + (q-6p)\sin 3t = 37\sin 3t$	M1		
	$\Rightarrow p = -6, q = 1$	A1		
	$x = e^{-t} \left(A\cos 3t + B\sin 3t \right) - 6\cos 3t + \sin 3t$			
	$x=3$ when $t=0 \implies A-6=3 \implies A=9$	B1	Uses initial conditions.	
	$\dot{x} = e^{-t} \left(-3A\sin 3t + 3B\cos 3t \right) - e^{-t} \left(A\cos 3t + B\sin 3t \right) + 18\sin 3t + 3\cos 3t$	M1 A1		
	$\dot{x} = 0$ when $t = 0 \Rightarrow 3B - A + 3 = 0 \Rightarrow B = 2$ $x = e^{-t} (9\cos 3t + 2\sin 3t) - 6\cos 3t + \sin 3t$	A1	Obtains solution, AEF.	
		10		
10(ii)	As $t \to \infty$, $e^{-t} \to 0 \implies x \approx -6\cos 3t + \sin 3t$	B1	Obtains limit.	
	$\sin 3t - 6\cos 3t = \sqrt{37} \left(\frac{1}{\sqrt{37}} \sin 3t - \frac{6}{\sqrt{37}} \cos 3t \right)$	M1	Converts to $R\sin(3t-\phi)$	
	$=\sqrt{37}\sin\left(3t-\tan^{-1}6\right).$	A1	AG	
		3		

9231/13

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Myn

	FODEISTIED		1.all	<i>S</i> .
Question	Answer	Marks	Guidance	6
11E(i)	$(2r+1)^2 - (2r-1)^2 = 8r$	B1	Guidance	JA.COM
	$\Rightarrow 8\sum_{r=1}^{n} r = -1^{2} + (2n+1)^{2}$	M1	Sums both sides and uses method of differences.	
	$\Rightarrow \sum_{r=1}^{n} r = \frac{1}{2} n (n+1)$	A1	AG.	
		3		
11E(ii)	$(2r+1)^4 - (2r-1)^4 = ((2r+1)^2 + (2r-1)^2)((2r+1)^2 - (2r-1)^2)$	M1	Uses difference of squares or expands.	
	$= (8r^{2} + 2)(8r) = 16(4r^{3} + r)$	A1		
	$\Rightarrow 4\sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r = -\left(1 - \frac{1}{2}\right)^{4} + \left(n + \frac{1}{2}\right)^{4}$	M1	Sums both sides and uses method of differences.	
	$4\sum_{r=1}^{n} r^{3} = \left(n + \frac{1}{2}\right)^{4} - \left(\frac{1}{2}\right)^{4} - \frac{1}{2}n(n+1)$	M1	Uses formula for $\sum r$	
	$=\left(\left(n+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\right)\left(\left(n+\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)-\frac{1}{2}n(n+1)=n^{2}(n+1)^{2}$	A1	AG	
		5		
11E(iii)	$S = \frac{1}{4} (2N+1)^2 (2N+2)^2 = (2N+1)^2 (N+1)^2$	B1	Uses formula for $\sum r^3$. AG.	
		1		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Mynas

Question	Answer	Marks	Guidance Sthsch	
11E(iv)	$T = S - \sum_{r=1}^{N} (2r)^{3} = (2N+1)^{2} (N+1)^{2} - 2N^{2} (N+1)^{2}$	M1	Guidance Isthsciout Eliminates even terms from S. Isthsciout	^o n
	$(N+1)^2 (2N^2 + 4N + 1)$	A1	Accept $(N+1)^2 (2N(N+2)+1)$.	
		2		
11E(v)	$\frac{S}{T} = \frac{\left(2N+1\right)^2}{2N^2+4N+1} = \frac{4N^2+4N+1}{2N^2+4N+1}$	M1	Writes fraction as quadratic in N divided by quadratic in N .	
	Converges to 2 as $N \rightarrow \infty$.	A1		
		2		
11O(i)	$x = -1 \Longrightarrow y^{3} + 2y - 3 = 0 \Longrightarrow (y - 1)(y^{2} + y + 3) = 0$	M1	Considers cubic polynomial in y .	
	There is only one real root (=1).	A1		
		2		

Cambridge International A Level – Mark Scheme PUBLISHED

October/Novembe Myn

TOBEIONED 73					
Answer	Marks	Guidance	c ₆ ,		
$2x + 2\left(x\frac{\mathrm{d}y}{\mathrm{d}x} + y\right)$	B1	Differentiates LHS correctly.	J.C.COM		
$=3y^2\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	Differentiates RHS correctly.			
$\Rightarrow \left(3y^2 - 2x\right)\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 2y$					
$x = -1, y = 1 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 0.$	B1	Substitutes (-1,1), AG.			
	3				
$\left(3y^2 - 2x\right)\frac{d^2y}{dx^2} + \frac{dy}{dx}\left(6y\frac{dy}{dx} - 2\right) = 2 + 2\frac{dy}{dx}$	M1 M1	Differentiates equation again.			
$x = -1, y = 1, \frac{dy}{dx} = 0 \Longrightarrow \frac{d^2 y}{dx^2} = \frac{2}{5}$	A1	Substitutes $(-1,1)$ and $\frac{dy}{dx} = 0$, AG.			
	3				
$\int_{-1}^{0} x^{n} \frac{d^{n} y}{dx^{n}} dx = \left[x^{n} \frac{d^{n-1} y}{dx^{n-1}} \right]_{-1}^{0} - n \int_{-1}^{0} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} dx$	M1 A1	Integrates by parts.			
$= (-1)^{n+1} A_{n-1} - nI_{n-1}.$	A1	AG.			
	3				
		Answer Marks $2x + 2\left(x\frac{dy}{dx} + y\right)$ B1 $= 3y^2 \frac{dy}{dx}$ B1 $\Rightarrow (3y^2 - 2x) \frac{dy}{dx} = 2x + 2y$ B1 $x = -1, y = 1 \Rightarrow \frac{dy}{dx} = 0.$ B1 $(3y^2 - 2x) \frac{d^2y}{dx^2} + \frac{dy}{dx} \left(6y \frac{dy}{dx} - 2 \right) = 2 + 2 \frac{dy}{dx}$ B1 $x = -1, y = 1, \frac{dy}{dx} = 0 \Rightarrow \frac{d^2y}{dx^2} = \frac{2}{5}$ A1 $x = -1, y = 1, \frac{dy}{dx} = 0 \Rightarrow \frac{d^2y}{dx^2} = \frac{2}{5}$ A1 $x = -1, y = 1, \frac{dy}{dx} = 0 \Rightarrow \frac{d^2y}{dx^2} = \frac{2}{5}$ M1 A1 $= (-1)^{n+1} A_{n-1} - nI_{n-1}.$ A1	AnswerMarksGuidance $2x + 2\left(x\frac{dy}{dx} + y\right)$ B1Differentiates LHS correctly. $= 3y^2 \frac{dy}{dx}$ B1Differentiates RHS correctly. $= 3y^2 \frac{dy}{dx}$ B1Differentiates RHS correctly. $\Rightarrow (3y^2 - 2x)\frac{dy}{dx} = 2x + 2y$ B1Substitutes (-1,1), AG. $x = -1, y = 1 \Rightarrow \frac{dy}{dx} = 0.$ B1Substitutes (-1,1), AG. $(3y^2 - 2x)\frac{d^2y}{dx^2} + \frac{dy}{dx} (6y\frac{dy}{dx} - 2) = 2 + 2\frac{dy}{dx}$ M1 M1Differentiates equation again. $x = -1, y = 1, \frac{dy}{dx} = 0 \Rightarrow \frac{d^2y}{dx^2} = \frac{2}{5}$ A1Substitutes (-1,1) and $\frac{dy}{dx} = 0$, AG. $y = -1, y = 1, \frac{dy}{dx} = 0 \Rightarrow \frac{d^2y}{dx^2} = \frac{2}{5}$ M1 A1Integrates by parts. $\int_{-1}^{0} x^{a} \frac{d^{a-1}y}{dx^{a-1}} \int_{-1}^{0} -n \int_{-1}^{0} x^{a-1} \frac{d^{a-1}y}{dx^{a-1}} dx$ A1AG.		

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/Novembe my

Question	Answer	Marks	Guidance	SCIO,
11O(v)	$I_3 = (-1)^4 A_2 - 3I_2 = A_2 - 3(-A_1 - 2I_1) = \frac{2}{5} + 6I_1$	M1 A1	Uses reduction formulae.	scloud.com
		2		