

Cambridge Assessment International Education

Cambridge International Advanced Level

FURTHER MATHEMATICS 9231/13 Paper 1 October/November 2017

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

October/No. Mymathscloud.com

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 17

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 17

Question	Answer	Marks	Guidance
1	$\sum_{r=1}^{n} u_r = 16 \sum_{r=1}^{n} r^2 - 8 \sum_{r=1}^{n} r - 3n$	M1A1	M1 for split into 3 parts
	$=16\frac{n(n+1)(2n+1)}{6}-8\frac{n(n+1)}{2}-3n$	M1	For using formulae correctly in their expression
	$= \dots = \frac{n}{3} \left(16n^2 + 12n - 13 \right) $ (3 terms)	A1	OE
		4	

Question	Answer	Marks	Guidance
2	CF: $m^2 + 2m + 5 = 0 \Rightarrow m = -1 \pm 2i$	M1	
	$e^{-t}(A\cos 2t + B\sin 2t)$	A1	
	PI: $x = pt^2 + qt + r \Rightarrow \dot{x} = 2pt + q \Rightarrow \ddot{x} = 2p$	M1	
	$2p + 4pt + 2q + 5pt^2 + 5qt + 5r = 4 - 5t^2$	M1	
	$\Rightarrow p = -1, q = \frac{4}{5}, r = \frac{22}{25}$	A1	
	GS: $x = e^{-t} (A \cos 2t + B \sin 2t) + \frac{22}{25} + \frac{4}{5}t - t^2$	A1FT	
		6	

9231/13	Cambridge International A Level – Mark Scheme PUBLISHED Answer Marks Guidance $\frac{d^{n+1}}{dx^{n+1}}(x^{n+1}\ln x) = \frac{d^n}{dx^n}\left(x^{n+1} \cdot \frac{1}{x} + (n+1)x^n \ln x\right) = \frac{d^n}{dx^n}(x^{n+1} \cdot \frac{1}{x} + (n+1)x^n \ln x) = \frac{d^n}{dx^n}($					
Question	Answer	Marks	Guidance	TITISCIO.		
3(i)	$\frac{d^{n+1}}{dx^{n+1}} \left(x^{n+1} \ln x \right) = \frac{d^n}{dx^n} \left(x^{n+1} \cdot \frac{1}{x} + (n+1) x^n \ln x \right) =$	M1A1		Jud. Com		
	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}\Big(x^n+(n+1)x^n\mathrm{lnx}\Big)$		AG			
		2				
3(ii)	Assume H_k is true $\Rightarrow \frac{d^k}{dx^k} (x^k \ln x) = k! \left\{ \ln x + 1 + \frac{1}{2} + \dots + \frac{1}{k} \right\}$	B1	Statement of H_k seen			
	$\frac{d^{k+1}}{dx^{k+1}} \left(x^{k+1} \ln x \right) = \frac{d^k}{dx^k} \left(x^k + [k+1] x^k \ln x \right)$	M1				
	$= k! + [k+1]k! \left\{ \ln x + 1 + \frac{1}{2} + \dots + \frac{1}{k} \right\}$	A1				
	$= (k+1)! \left\{ \ln x + 1 + \frac{1}{2} + \dots + \frac{1}{k+1} \right\} \Longrightarrow \mathbf{H}_{k+1} \text{ is true}$	A1				
	Check H_1 is true and H_k is true \Rightarrow H_{k+1} is true; hence, by PMI, H_n is true for all positive integers n .	A1				
		5				

9231/13	Cambridge International A Level – Mark Scheme PUBLISHED October/No. Thurston Published on Answer Marks Guidance $\alpha + \beta + \gamma = \frac{3}{2} \alpha\beta + \beta\gamma + \gamma\alpha = 2 \alpha\beta\gamma = 5 + \beta + \gamma = $ B1 (Can be awarded in (ii) if not seen here) SOI					
Question	Answer	Marks	Guidance	THIS CHO.		
4(i)	$\alpha + \beta + \gamma = \frac{3}{2} \qquad \alpha\beta + \beta\gamma + \gamma\alpha = 2 \qquad \alpha\beta\gamma = 5 + \beta + \gamma = $ $\frac{3}{2}\alpha\beta + \beta\gamma + \gamma\alpha = 2\alpha\beta\gamma = 5$	B1	(Can be awarded in (ii) if not seen here) SOI	AN.COM		
	$(\alpha+1)(\beta+1)(\gamma+1) = \alpha\beta\gamma + (\alpha\beta+\beta\gamma+\gamma\alpha) + (\alpha+\beta+\gamma) + 1$	M1A1	Multiply out and group for M1			
	$= 5 + 2 + 1\frac{1}{2} + 1 = 9\frac{1}{2}$	A1FT	Alt method: Let $x = y - 1$ M1 Sub and expand $2y^3 - 9y^2$ $16y - 19 = 0$ M1, A1 Product of roots = 19/2 A1			
		4				
4(ii)	$(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta) = \left(1\frac{1}{2} - \alpha\right)\left(1\frac{1}{2} - \beta\right)\left(1\frac{1}{2} - \gamma\right)$	M1	Alt methods: $=(\sum \alpha)(\sum \alpha \beta) - \alpha \beta \gamma$ or $\sum \alpha^2 \sum \alpha + 2\alpha \beta \gamma - \sum \alpha^3$			
	$=\frac{27}{8}-\frac{9}{4}(\alpha+\beta+\gamma)+\frac{3}{2}(\alpha\beta+\beta\gamma+\gamma\alpha)-\alpha\beta\gamma$	A1				
	$= \frac{27}{8} - \frac{9}{4} \times \frac{3}{2} + \frac{3}{2} \times 2 - 5 = -2$	M1A1				
		4				

9231/13	Cambridge International PUBL	October/No. Mynaths Cloud Com		
Question	Answer	Marks	Guidance	Althoch.
5(i)	$6x^{2} + 6xy + 3x^{2}y' - 9y^{2}y' = 0 (*) \Rightarrow 2x(x+y) = (3y^{2} - x^{2})y'$	M1A1		- da con
	$y' = 0$ and $x \neq 0 \Rightarrow x = -y$	M1A1		
	$\Rightarrow 2x^3 - 3x^3 + 3x^3 = 16 \Rightarrow A \text{ is } (2, -2)$	A1		
		5		
5(ii)	$12x + 6xy' + 6y + 6xy' + 3x^{2}y'' - \left[18y(y')^{2} + 9y^{2}y''\right] = 0$	*M1		
	$x=2$ $y=-2$ $y'=0 \Rightarrow 8-4+4y''-12y''=0$	DM1		
	$\Rightarrow y'' = \frac{1}{2}$	A1		
		3		

© UCLES 2017 Page 7 of 17

9231/13	Cambridge International A Level – Mark Scheme PUBLISHED			No. Thymathscloud
Question	Answer	Marks	Guidance	Tiths Clo
6(i)	$\overrightarrow{AB} = \mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ $\overrightarrow{BC} = -4\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$ $\overrightarrow{AC} = -3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$	B1	2 correct required	340.
	$\overrightarrow{AB} \times \overrightarrow{BC} = 21\mathbf{i} + 3\mathbf{j} + 18\mathbf{k} (*)$	M1A1	OE	
	Area of triangle $ABC = \frac{1}{2}\sqrt{21^2 + 3^2 + 18^2} = 13.9\left(\frac{3}{2}\sqrt{86}\right)$	A1		
	Alt method: Use scalar product to find angle	(M1A1		
	Find area using Area = $\frac{1}{2}ab \sin C$ or equivalent	M1A1)		
		4		
6(ii)	$d = \frac{ \overrightarrow{AB} \times \overrightarrow{BC} }{ \overrightarrow{BC} } = \frac{\sqrt{21^2 + 3^2 + 18^2}}{\sqrt{4^2 + 2^2 + 5^2}}$	M1A1	Alt method: Find angle at C	
	$=4.15\left(\frac{1}{5}\sqrt{430}\right)$	A1	Area triangle = $\sin C \times AC $	
	Alt method: Use equation of BC to find D (foot of perpendicular) in terms of parameter and scalar product to find parameter, λ = 8/15. Find length	(M1A1)		
		3		
6(iii)	From (*) Cartesian equation is $7x + y + 6z = \text{const.}$	M1		
	Through $(2, -1, 1)$ Hence $7x + y + 6z = 19$	A1		
		2		

9231/13	Cambridge Internationa PUB	nal A Level – N BLISHED	Wark Scheme October/No. 7	Nyna May
Question	Answer	Marks	Guidance	Hrsch.
7(i)	$\begin{pmatrix} 1 & -1 & -2 & 3 \\ 5 & -3 & -4 & 25 \\ 6 & -4 & -6 & 28 \\ 7 & -5 & -8 & 31 \end{pmatrix} \rightarrow \dots \rightarrow \begin{pmatrix} 1 & -1 & -2 & 3 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	M1A1	Mark Scheme October/No. The Guidance	Od.com
	$r(\mathbf{A}) = 4 - 2 = 2$	A1		
	x - y - 2z + 3t = 0 y + 3z + 5t = 0	B1		
	$z = \lambda$, $t = \mu \implies x = -\lambda - 8\mu$, $y = -3\lambda - 5\mu$	M1		
	Basis for null space is $ \left\{ \lambda \begin{pmatrix} -1 \\ -3 \\ 1 \\ 0 \end{pmatrix}, \mu \begin{pmatrix} -8 \\ -5 \\ 0 \\ 1 \end{pmatrix} \right\} \begin{pmatrix} 19 \\ 0 \\ 5 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 19 \\ -8 \\ 1 \end{pmatrix} $	A1 A1	OE	
		7		
7(ii)	$\mathbf{A} \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 3\\21\\24\\27 \end{pmatrix}$	B1		
	$\mathbf{x} = \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\-3\\1\\0 \end{pmatrix} + \mu \begin{pmatrix} -8\\-5\\0\\1 \end{pmatrix}$	M1A1FT	OE	
		3		

9231/13	Cambridge International A		Mark Scheme October/No. Tryn	13.43
Question	Answer	Marks	Guidance	TINGC/O.
8(i)	$I_2 = \int_{0}^{\frac{1}{4}\pi} \sec^2 x dx = \left[\tan x\right]_{0}^{\frac{1}{4}\pi} = 1$	M1A1	Mark Scheme October/No. The Guidance	Jud.com
		2		
8(ii)	$I_n = \int_{0}^{\frac{1}{4}\pi} \sec^{n-2} x \cdot \sec^2 x dx$	M1		
	$= \left[\sec^{n-2}x\tan x\right]_0^{\frac{1}{4}\pi} - \int_0^{\frac{1}{4}\pi} (n-2)\sec^{n-3}x(\sec x\tan x)\tan xdx$	M1A1		
	$= \left[\sec^{n-2}x\tan x\right]_0^{\frac{1}{4}\pi} - (n-2)\int_0^{\frac{1}{4}\pi}\sec^{n-2}x\left(\sec^2x - 1\right)dx$	M1A1		
	$\Rightarrow (n-1)I_n = 2^{\frac{1}{2}n-1} + (n-2)I_{n-2}$		AG	
		5		

9231/13	Cambridge International A Level – Mark Scheme PUBLISHED			My Maths Cloud Com
Question	Answer	Marks	Guidance	*thsch
8(iii)	Volume of revolution = $\pi \int y^2 dx = \pi \int_0^{\frac{1}{4}\pi} \sec^6 x dx$	M1		Ad. COM
	$3I_4 = 2 + 2 \times 1 \Longrightarrow I_4 = \frac{4}{3}$	M1		
	$5I_6 = 4 + 4 \times \frac{4}{3} \Rightarrow I_6 = \frac{28}{15}$	M1		
	Volume of revolution $=\frac{28\pi}{15}$	A1		
		4		

9231/13	Cambridge International A		Mark Scheme October/No	Nun. My nathscloud.com
Question	Answer	Marks	Guidance	Thsch.
9(i)	Degree of numerator $<$ degree of denominator $\Rightarrow y = 0$ is horizontal asymptote.	B1		JUY.COM
	$(x+1)(x-2)=0 \Rightarrow x=-1 \text{ and } \Rightarrow x=2 \text{ are vertical asymptotes.}$	B1		
		2		
9(ii)	$yx^2 - (y+3)x + 9 - 2y = 0$	M1		
	No points on <i>C</i> if $(y+3)^2 - 4y(9-2y) < 0$	M1		
	$\Rightarrow 9y^2 - 30y + 9 < 0 \Rightarrow 3y^2 - 10y + 3 < 0$	A1		
	$\Rightarrow (3y-1)(y-3) < 0 \Rightarrow \frac{1}{3} < y < 3$	A1	AG	
		4		
9(iii)	$\frac{dy}{dx} = 0 \Rightarrow 3(x^2 - x - 2) - (3x - 9)(2x - 1) = 0$	B1		
	$\Rightarrow \ldots \Rightarrow (x-1)(x-5) = 0$	B1		
	\Rightarrow Turning points are (1,3) and $\left(5,\frac{1}{3}\right)$.	B1		
		3		

9231/13		October/No. Mynathscloud.com			
Question		Answer	Marks	Guidance	ATTIS COLO
9(iv)	W. Carlotte	Axes, asymptotes and points on axes (0, 4.5) (3,0).	B1		Od. Com
		RH branch; Other two branches	B1B1		
			3		

Question	Answer	Marks	Guidance
10(i)	$\sin 5\theta = Im(c + is)^5 =$	B1	SOI
	$Im(c^{5} + 5c^{4}is + 10c^{3}(is)^{2} + 10c^{2}(is)^{3} + 5c(is)^{4} + (is)^{5})$		
	$\sin 5\theta = 5c^4s - 10c^2s^3 + s^5$	M1A1	
	$= s \left(5 \left[1 - s^2 \right]^2 - 10s^2 \left[1 - s^2 \right] + s^4 \right)$	M1	
	$= \dots = 5\sin\theta - 20\sin^3\theta + 16\sin^5\theta$	A1	AG
		5	

9231/13	Cambridge International PUBL		Mark Scheme October/No. The Guidance	1243
Question	Answer	Marks	Guidance	ALASCIO.
10(ii)	If $\theta = 0$, $\pm \frac{1}{5}\pi$, $\pm \frac{2}{5}\pi$ then $\sin 5\theta = 0$	B1		SUD, COM
	$\Rightarrow 16s^5 - 20s^3 + 5s = 0, \text{ where } s = \sin \theta,$ $\Rightarrow s \left(16s^4 - 20s^2 + 5\right) = 0$	B1		
	$s = 0 \Rightarrow \theta = 0$	B1		
	Hence roots of $16s^4 - 20s^3 + 5 = 0$ are $\pm \sin \frac{1}{5}\pi$, $\pm \sin \frac{2}{5}\pi$		AG	
		3		
10(iii)	Since $\sin \frac{4}{5}\pi = -\sin\left(-\frac{1}{5}\pi\right)$ and $\sin \frac{3}{5}\pi = -\sin\left(-\frac{2}{5}\pi\right)$	B1		
	$\sin\left(\frac{4}{5}\pi\right)\sin\left(\frac{3}{5}\pi\right)\sin\left(\frac{2}{5}\pi\right)\sin\left(\frac{1}{5}\pi\right) = \\ \sin\left(-\frac{1}{5}\pi\right)\sin\left(-\frac{2}{5}\pi\right)\sin\left(\frac{1}{5}\pi\right)\sin\left(\frac{2}{5}\pi\right) = \frac{5}{16}$	M1A1		
	$\sin^2 \frac{1}{5}\pi + \sin^2 \frac{2}{5}\pi = -\frac{(-20)}{16} = \frac{5}{4}$	A1		
		4		

9231/13	Cambridge International A Level – Mark Scheme PUBLISHED Answer Marks Guidance $Ae = \lambda e \text{ and } Be = \mu e$ $AB = \lambda e \text{ and } Be = \mu e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$ $AB = \lambda e \text{ and } Ae = \lambda e$			MA MO
Question	Answer	Marks	Guidance	THIS
11E(i)	$\mathbf{A}\mathbf{e} = \lambda\mathbf{e}$ and $\mathbf{B}\mathbf{e} = \mu\mathbf{e}$	M1A1		
	$\mathbf{ABe} = \mathbf{A}\mu\mathbf{e} = \mu\mathbf{Ae} = \mu\lambda\mathbf{e} = \lambda\mu\mathbf{e}$	M1	AG	
		3		
11E(ii)	$(\lambda + 1)(\lambda^2 - 5\lambda + 6) = 0$	A1		
	$(\lambda+1)(\lambda-2)(\lambda-3)=0$	A1		
	$\lambda = -1, 2, 3.$	M1		
	Eigenvectors are $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ respectively.	A1A1	Uses either vector product or equations to find eigenvectors	
		6		
11E(iii)	$\begin{pmatrix} 3 & 6 & 1 \\ 1 & -2 & -1 \\ 6 & 6 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 0 \end{pmatrix} \Rightarrow \mu_1 = -3$	M1		
	Similarly, other two eigenvalues of $\bf B$ are -2 and 4 .	A1		
	Eigenvalues of AB are 3, –4 and 12	A1		
	Corresponding eigenvectors are $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.	A1		
		4		1

9231/13	Cambridge International A Level – Mark Scheme PUBLISHED October/No.			
Question	Answer	Marks	Guidance	Thys Cho.
11OR		B1	Mark Scheme Cuidance Closed curve starting and ending at pole, in approximately correct location.	90
	3	B1	Cardioid with indication of correct scale.	
		2		
11OR(ii)	$r = a(1 + \cos\theta) \Rightarrow \sqrt{x^2 + y^2} = a\left(1 + \frac{x}{\sqrt{x^2 + y^2}}\right)$	M1		
	$x^{2} + y^{2} = a(x + \sqrt{(x^{2} + y^{2})})$	A1	Substitutes for r and $cos(\theta)$	
		2		

9231/13	Cambridge Internationa PUB	al A Level – Ma LISHED	ark Scheme Octob	per/No. Thymathscloud.com
Question	Answer	Marks	Guidance	Thsch.
11OR(iii)	Sector area $ = \frac{a^2}{2} \int_0^{\frac{1}{3}\pi} \left(1 + 2\cos\theta + \cos^2\theta \right) d\theta $ $ = \frac{a^2}{2} \int_0^{\frac{1}{3}\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos 2\theta}{2} \right) d\theta $	M1A1		Jud.com
	$= \frac{a^2}{2} \left[\frac{3\theta}{2} + 2\sin\theta + \frac{\sin 2\theta}{4} \right]_0^{\frac{1}{3}\pi}$	M1		
	$=\frac{a^2}{16}\left(4\pi+9\sqrt{3}\right)$	A1		
		4		
11OR(iv)	Arc length $= \int_{0}^{\frac{1}{3}\pi} \sqrt{a^2 \left(1 + 2\cos\theta + \cos^2\theta\right) + a^2 \left(-\sin\theta\right)^2} d\theta$	M1A1		
	$= a \int_{0}^{\frac{1}{3}\pi} \sqrt{2 + 2\cos\theta} d\theta$	A1		
	$= a \left[4\sin\frac{\theta}{2} \right]_0^{\frac{1}{3}\pi} = 2a$	M1A1		
		5		