

MARK SCHEME for the October/November 2015 series

9231 FURTHER MATHEMATICS

9231/13

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			mm. m.
Page 2	Mark Scheme	Syllabus	P. Marshart
	Cambridge International A Level – October/November 2015	9231	13 15 15
Mark Sch	eme Notes		13 THSCIOUCICOM
Marks	s are of the following three types:		

Mark Scheme Notes

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to guote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., • or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

			P-1 P-1 P-1 P-1 P-1 P-1 P-1 P-1 P-1 P-1
Page 3	Mark Scheme	Syllabus	P. Mar Mar
	Cambridge International A Level – October/November 2015	9231	13 13
The fo	ollowing abbreviations may be used in a mark scheme or used on the	scripts:	13 Sthscloud.com
AEF	Any Equivalent Form (of answer is equally acceptable)		-m

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a

Penalties

particular circumstance)

- A penalty of MR -1 is deducted from A or B marks when the data of a question or MR –1 part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through V" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Pag	e 4 Mark Scheme	Syllabus P. T.
- ug	Cambridge International A Level – October/November 2015	9231 13 ⁹ ¹⁷ ₅
n & art	Solution	Syllabus P. Marks
	$\dot{x} = -6\cos^2 t \sin t, \dot{y} = 6\sin^2 t \cos t$	B1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\tan t (\mathrm{OE})$	B1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\sec^2 t \times \frac{-1}{6\cos^2 t \sin t} = \frac{1}{6}\sec^4 t \operatorname{cosect} AG$	M1A1 [4] Total 4
	$m^2 + 4m + 4 = 0 \Longrightarrow (m+2)^2 = 0 \Longrightarrow m = -2$	M1
	CF: $Ae^{-2t} + Bte^{-2t}$ soi	A1
	PI: $x = pt^2 + qt + r \Rightarrow \dot{x} = 2pt + q \Rightarrow \ddot{x} = 2p$	M1
	$\Rightarrow 2p + 8pt + 4q + 4pt^{2} + 4qt + 4r = 7 - 2t^{2}$ $\Rightarrow p = -\frac{1}{2}, q = 1, r = 1$	M1 A1
	GS: $x = Ae^{-2t} + Bte^{-2t} - \frac{1}{2}t^2 + t + 1$	A1 [6] Total
	$n = 1$ in formula gives $a^0 e^{ax} + axe^{ax} = e^{ax} + axe^{ax}$	6 B1
	$\frac{d}{dx}(xe^{ax}) = e^{ax} \times 1 + x ae^{ax} = e^{ax} + axe^{ax} \Longrightarrow H_1 \text{ is true oe}$	B1
	Assume H _k is true, i.e. $\frac{d^k}{dx^k} (xe^{ax}) = ka^{k-1}e^{ax} + a^k xe^{ax}$.	B1
	$\frac{\mathrm{d}^{k+1}}{\mathrm{d}x^{k+1}}\left(x\mathrm{e}^{ax}\right) = ka^{k}\mathrm{e}^{ax} + a^{k}\mathrm{e}^{ax} + a^{k+1}x\mathrm{e}^{ax}$	M1
	$= (k+1)a^{k}e^{ax} + a^{k+1}xe^{ax}$ $\Rightarrow H_{k+1} \text{ is true, hence by PMI } H_{n} \text{ is true for all positive integers } n.$	A1 A1 [6] Total 6
	$\left(\frac{6}{\sqrt{1}} - \frac{7}{\sqrt{3}}\right) + \left(\frac{7}{\sqrt{3}} - \frac{8}{\sqrt{7}}\right) + \dots + \left(\frac{35}{\sqrt{871}} - \frac{36}{\sqrt{931}}\right) = 6 - \frac{36}{\sqrt{931}} = 4.820$	M1A1 A1 [3]
(ii)	$6 - \frac{n+6}{\sqrt{n^2 + n + 1}} > 4.9 \Longrightarrow 0.21n^2 - 10.79n - 34.79(>0)$	M1A1
	$\sqrt{n^2 + n + 1}$ $\Rightarrow n > 54.42$ so 55 terms required.	dM1A1 [4] Total

Pag	e 5 Mark Scheme Syllabus	P. M. Mar
	Cambridge International A Level – October/November 2015 9231	13 Pth
Qn & Part	Solution	Mun Munaths Cloud Marks
;	$\alpha + \beta + \gamma = -p = 15 \Longrightarrow p = -15$	B1
	$2(\alpha\beta + \beta\gamma + \gamma\alpha) = (\alpha + \beta + \gamma)^2 - (\alpha^2 + \beta^2 + \gamma^2) = 2q$	M1
	$\Rightarrow q = \frac{1}{2}(225 - 83) = 71$	A1 [3]
	$\frac{36}{\alpha} = 15 - \alpha (= [\beta + \gamma])$	M1
	$\Rightarrow a^2 - 15\alpha + 36 = 0 \Rightarrow \alpha = 3$, $\alpha \neq 12$, <i>e.g.</i> since $12^2 > 83$ or other reason $\beta\gamma = 71 - 36 = 35$	M1A1 B1
	$\Rightarrow r = -\alpha\beta\gamma = -3 \times 35 = -105 \text{ (extra answer penalised)}$	A1 [5] Total 8
	$\lambda = 1: \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 10 & -8 & 10 \\ 7 & -5 & 7 \end{vmatrix} = \begin{pmatrix} -6 \\ 0 \\ 6 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{ oe}$ $\lambda = 3: \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 0 \\ 10 & -10 & 10 \end{vmatrix} = \begin{pmatrix} 0 \\ 20 \\ 20 \end{pmatrix} \sim \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ oe}$	M1A1 A1 [3]
	$ \begin{pmatrix} 1 & 0 & 0 \\ 10 & -7 & 10 \\ 7 & -5 & 8 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \\ -2 \end{pmatrix} = -2 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \Rightarrow \lambda = -2 $	M1A1 [2]
	$\mathbf{D} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} $ (or other multiples or permutations).	B1 ∿ B1√
	Det $\mathbf{P} = -1$ (or 1 depending on permutation).	B1
	Adj $\mathbf{P} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 0 \\ -2 & 1 & 2 \end{pmatrix} \Rightarrow \mathbf{P}^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 0 & 0 \\ 2 & -1 & 2 \end{pmatrix}$ (or other permutations).	M1A1 [5] Total 10

Syllabus 9231 **Mark Scheme** Cambridge International A Level – October/November 2015

Pa	ge 6 Mark Scheme Syllabus	P. J. The
	Cambridge International A Level – October/November 2015 9231	13 ath
Qn & Part	Solution	Munu, my nating cloud Marks
	$ \begin{pmatrix} 1 & -2 & -3 & 1 \\ 3 & -5 & -7 & 7 \\ 5 & -9 & -13 & 9 \\ 7 & -13 & -19 & 11 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -3 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -3 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	M1A1
	r(M) = 4 - 2 = 2	A1
	x - 2y - 3z + t = 0 $y + 2z + 4t = 0$	M1
	E.g. Set $z = \lambda$ and $t = \mu \Rightarrow y = -2\lambda - 4\mu$ and $x = -\lambda - 9\mu$	M1
	$\Rightarrow \text{Basis is} \left\{ \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -9 \\ -4 \\ 0 \\ 1 \end{pmatrix} \right\}$	A1 [6]
	$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -9 \\ -4 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \\ -1 \\ 1 \\ 1 \end{pmatrix}$	M1
	Solving: $\lambda = -4$ and $\mu = -5$ $\Rightarrow a = 50$, $b = 30$.	M1 A1 A1 [4] Total 10
	$y' = 0 \Longrightarrow (x+1)(4x+k) - (2x^2 + kx) \times 1 = 0$	M1
	$\Rightarrow 4x^{2} + (4+k)x + k - 2x^{2} - kx = 0 \Rightarrow 2x^{2} + 4x + k = 0$	A1
	$B^2 - 4AC < 0 \Rightarrow$ no stationary points $\Rightarrow 16 - 8k < 0$ $\Rightarrow k > 2$ for no stationary points.	M1A1 A1
	When $k = 4$:	[5]
	Vertical asymptote: $x = -1$	B1
	Oblique asymptote: $y = 2x + 2 - \frac{2}{x+1} \Rightarrow y = 2x + 2$	M1A1
	Axes and asymptotes Each branch.	B1 B1B1 [6] Total 11

Mark Scheme	Syllabus	Ī
Cambridge International A Level – October/November 2015	9231	Ī

Page 7	Mark Scheme Cambridge International A Level – October/November 2015	Syllabus 9231	P. Unaths
ı & ırt	Solution		Marks
$\int_{1}^{e} \ln$	$x dx = x \ln x - x$		B1
$I_n =$	$= \int_{1}^{e} (\ln x)^{n-1} . \ln x dx$		M1
=	$= \left[(\ln x)^{n-1} (x \ln x - x) \right]_{1}^{e} - \int_{1}^{e} (n-1) (\ln x)^{n-2} \cdot \frac{1}{x} (x \ln x - x) dx$		M1A1
=	$= 0 - \int_{1}^{e} (n-1)(\ln x)^{n-2}(\ln x - 1)dx = (n-1)[I_{n-2} - I_{n-1}] (AG)$		M1A1 [6]
Alt	ernative for obtaining reduction formula:		
$I_n =$	$= \int_{1}^{e} (\ln x)^{n} \times 1 dx = \left[x (\ln x)^{n} \right]_{1}^{e} - \int_{1}^{e} n (\ln x)^{n-1} dx$		M1A1
	$I_n = \mathbf{e} - nI_{n-1} \tag{1}$		A1
	hilarly $I_{n-1} = e - (n-1)I_{n-2}$ $I_n + nI_{n-1} = I_{n-1} + (n-1)I_{n-2}$		B1 M1
	$I_n = (n-1)[I_{n-2} - I_{n-1}] (AG)$		A1 [6]
	$= [x]_{1}^{e} = e - 1$		B1
<i>I</i> ₁ =	$= [x \ln x - x]_{1}^{e} = 1$		B1
-	$=1 \times (e - 1 - 1) = e - 2$		M1
<i>I</i> ₃ =	$= 2(I_1 - I_2) = 2(1 - [e - 2]) = 6 - 2e$		A1
MV	$V = \frac{I_3}{e - 1} = \frac{6 - 2e}{e - 1}$		M1 A1
			[6] Total

			mm m		
Pa	ge 8	Mark Scheme	Syllabus	P. J.Marine	
		Cambridge International A Level – October/November 2015	9231	<u>13</u> , n _s c _l o,	
Qn & Part		Solution		Mun. P. Mathscioud Marks Com	
10	(cos	$(\theta + i\sin\theta)^5 = \cos 5\theta + i\sin 5\theta$		B1	
	(c+i	$s)^{5} = c^{5} + 5c^{4}si - 10c^{3}s^{2} - 10ic^{2}s^{3}i + 5cs^{4} + s^{5}i$		M1A1	
		$\theta = \frac{5c^4s - 10c^2s^3 + s^5}{c^5 - 10c^3s^2 + 5cs^4}$		M1	
	Divid	le numerator and denominator by c^5 (stated or shown):			
	⇒ ta	$n 5\theta = \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta} (AG)$		A1 [5]	
	tan 5	$\theta = 0 \Longrightarrow \theta = \frac{1}{5}\pi, \frac{2}{5}\pi, \frac{3}{5}\pi, \frac{4}{5}\pi, \pi$		B1	
	$t^{5}-1$	$0t^3 + 5t = 0$ has roots $\tan\left(\frac{1}{5}\pi\right), \tan\left(\frac{2}{5}\pi\right), \tan\left(\frac{3}{5}\pi\right), \tan\left(\frac{4}{5}\pi\right), \tan\pi$			
	$\Rightarrow t^4$	$-10t^2 + 5 = 0$ has roots $\tan\left(\frac{1}{5}\pi\right), \tan\left(\frac{2}{5}\pi\right), \tan\left(\frac{3}{5}\pi\right), \tan\left(\frac{4}{5}\pi\right).$		B1	
	$\Rightarrow (t$	$t^{2} - \tan^{2}\left(\frac{1}{5}\pi\right)\left(t^{2} - \tan^{2}\left(\frac{2}{5}\pi\right)\right) = 0$			
	since	$ \tan\left(\frac{1}{5}\pi\right) = -\tan\left(\frac{4}{5}\pi\right) \text{ and } \tan\left(\frac{2}{5}\pi\right) = -\tan\left(\frac{3}{5}\pi\right). $		M1	
	$\Rightarrow x^2$	$x^{2} - 10x + 5 = 0$ has roots $\tan^{2}\left(\frac{1}{5}\pi\right)$ and $\tan^{2}\left(\frac{2}{5}\pi\right)$. (AG)		A1 [4]	
	sec ²	$\alpha = 1 + \tan^2 \alpha$		M1	
	y = 1	$+x \Longrightarrow x = y - 1 \Longrightarrow (y - 1)^2 - 10(y - 1) + 5 = 0$		M1	
	$\Rightarrow y^2$	$x^2 - 12y + 16 = 0$		A1	
				[3] Total 12	

		mm m
Ра	ge 9 Mark Scheme	Syllabus P. Maria
	Cambridge International A Level – October/November 2015	9231 13 13 5 5 6 6 1 5 6 6 1 5 6 1 5 1 5
Qn & Part	Solution	Www.mymainsen Syllabus PL 9231 13 Narks On
11 E	E.g. $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 0 \\ -1 & 0 & 4 \end{vmatrix} = \begin{pmatrix} 8 \\ 4 \\ 2 \end{pmatrix} \sim \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$	M1A1
	$\frac{\begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 4\\2\\1 \end{pmatrix}}{\sqrt{4^2 + 2^2 + 1^2}} = \frac{4}{\sqrt{21}} (AG)$	M1A1 [4]
	$\mathbf{p} = \frac{3}{\sqrt{21}} \left(\frac{4\mathbf{i} + 2\mathbf{j} + \mathbf{k}}{\sqrt{21}} \right) = \frac{1}{7} (4\mathbf{i} + 2\mathbf{j} + \mathbf{k})$	B1
	Line AP: $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$	M1A1
	For Q $1-3t = 0 \Rightarrow t = \frac{1}{3} \Rightarrow \mathbf{q} = \frac{1}{3} \begin{pmatrix} 0\\2\\1 \end{pmatrix}$	M1A1 [5]
	E.g. $\overrightarrow{AB} = \begin{pmatrix} -1\\2\\0 \end{pmatrix}, \ \overrightarrow{BQ} = \frac{1}{3} \begin{pmatrix} 0\\-4\\1 \end{pmatrix}$	B1
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 0 \\ 0 & -4 & 1 \end{vmatrix} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$	M1A1
	$\cos^{-1} \frac{\begin{pmatrix} 4\\2\\1\\1 \end{pmatrix} \begin{pmatrix} 2\\1\\4 \end{pmatrix}}{\sqrt{21} \sqrt{21}} = \cos^{-1} \frac{8+2+4}{21} = \cos^{-1} \frac{14}{21} = \cos^{-1} \frac{2}{3} $ (AG)	M1A1 [5] Total 14

Page 10	Mark Scheme	Syllabus	P۵
	Cambridge International A Level – October/November 2015	9231	1

			nnn	2 12
F	Page 10	Mark Scheme	Syllabus P	Unav Math
		Cambridge International A Level – October/November 2015	9231	<u>13</u> 7500
Qn & Par		Solution		Marks Con
110		ed curve through pole with correct orientation. pletely correct.		B1 B1 [2]
	$2 \times \frac{1}{2}$	$a^{2} \int_{\frac{1}{2}\pi}^{\pi} (1 - 2\cos\theta + \cos^{2}\theta) d\theta = a^{2} \int_{\frac{1}{2}\pi}^{\pi} \left(\frac{3}{2} - 2\cos\theta + \frac{1}{2}\cos 2\theta\right) d\theta$		M1M1
		$=a^{2}\left[\frac{3}{2}\theta-2\sin\theta+\frac{1}{4}\sin 2\theta\right]_{\frac{1}{2}\pi}^{\pi}$		M1A1
		$=a^2\left(\frac{3}{4}\pi+2\right)$		A1 [5]
	$\left(\frac{\mathrm{d}s}{\mathrm{d}\theta}\right)$	$\int_{0}^{2} = a^{2}(1 - 2\cos\theta + \cos^{2}\theta + \sin^{2}\theta)$		B1
		$= 2a^{2}(1 - \cos\theta) = 2a^{2} \cdot 2\sin^{2}\frac{1}{2}\theta = 4a^{2}\sin^{2}\frac{1}{2}\theta (AG)$		M1A1
	s = 2	$2 \times \int_{\frac{1}{2}\pi}^{\pi} 2a \sin \frac{1}{2} \theta \mathrm{d}\theta$		M1
	= 4	$4a \left[-2\cos\frac{1}{2}\theta \right]_{\frac{1}{2}\pi}^{\pi}$		A1
		$\sqrt{2}a$		M1A1 [7] Total 14