Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50}=\sqrt{25 \times 2}$	$\mathbf{1}$Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$	
$=5 \times \sqrt{2}$	
$=5 \sqrt{2}$	$\mathbf{2}$Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ $\mathbf{3}$ Use $\sqrt{25}=5$

Example 2 Simplify $\sqrt{147}-2 \sqrt{12}$

$$
\begin{aligned}
& \sqrt{147}-2 \sqrt{12} \\
& =\sqrt{49 \times 3}-2 \sqrt{4 \times 3} \\
& =\sqrt{49} \times \sqrt{3}-2 \sqrt{4} \times \sqrt{3} \\
& =7 \times \sqrt{3}-2 \times 2 \times \sqrt{3} \\
& =7 \sqrt{3}-4 \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
$$

1 Simplify $\sqrt{147}$ and $2 \sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number

2 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
3 Use $\sqrt{49}=7$ and $\sqrt{4}=2$
4 Collect like terms

Example 3 Simplify $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$

$$
\begin{aligned}
& (\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2}) \\
& =\sqrt{49}-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}-\sqrt{4} \\
& =7-2 \\
& =5
\end{aligned}
$$

1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^{2}=49$

2 Collect like terms:

$$
\begin{aligned}
-\sqrt{7} \sqrt{2} & +\sqrt{2} \sqrt{7} \\
= & -\sqrt{7} \sqrt{2}+\sqrt{7} \sqrt{2}=0
\end{aligned}
$$

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{1 \times \sqrt{3}}{\sqrt{9}} \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{3}$

2 Use $\sqrt{9}=3$

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$
\begin{aligned}
\frac{\sqrt{2}}{\sqrt{12}} & =\frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}} \\
& =\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12} \\
& =\frac{2 \sqrt{2} \sqrt{3}}{12} \\
& =\frac{\sqrt{2} \sqrt{3}}{6}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{12}$

2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12 . One of the factors must be a square number

3 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4}=2$
5 Simplify the fraction:
$\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$\frac{3}{2+\sqrt{5}}=\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1 Multiply the numerator and denominator by $2-\sqrt{5}$
$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$	$\mathbf{2}$Expand the brackets
$=\frac{6-3 \sqrt{5}}{4+2 \sqrt{5}-2 \sqrt{5}-5}$	$\mathbf{3}$Simplify the fraction
$=\frac{6-3 \sqrt{5}}{-1}$	Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1
$=3 \sqrt{5}-6$	

Practice

1 Simplify.
a $\sqrt{45}$
b $\sqrt{125}$
c $\sqrt{48}$
d $\sqrt{175}$
e $\sqrt{300}$
f $\sqrt{28}$
g $\sqrt{72}$
h $\sqrt{162}$

Hint

One of the two numbers you choose at the start must be a square number.

2 Simplify.
a $\sqrt{72}+\sqrt{162}$
b $\sqrt{45}-2 \sqrt{5}$
c $\sqrt{50}-\sqrt{8}$
d $\sqrt{75}-\sqrt{48}$
e $2 \sqrt{28}+\sqrt{28}$
f $2 \sqrt{12}-\sqrt{12}+\sqrt{27}$

Watch out!

Check you have chosen the highest square number at the start.

3 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $\quad(5+\sqrt{2})(6-\sqrt{8})$

edexcel :\%

4 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{2}{\sqrt{7}}$
d $\frac{2}{\sqrt{8}}$
e $\frac{2}{\sqrt{2}}$
f $\frac{5}{\sqrt{5}}$
g $\quad \frac{\sqrt{8}}{\sqrt{24}}$
h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.
a $\frac{1}{3-\sqrt{5}}$
b $\frac{2}{4+\sqrt{3}}$
c $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$

7 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{9}-\sqrt{8}}$
b $\frac{1}{\sqrt{x}-\sqrt{y}}$

edexcel ：⿰夫夫ty

Answers

1 a $3 \sqrt{5}$
b $5 \sqrt{5}$
c $\quad 4 \sqrt{3}$
d $\quad 5 \sqrt{7}$
e $10 \sqrt{3}$
g $\quad 6 \sqrt{2}$
f $2 \sqrt{7}$
h $9 \sqrt{2}$

2 a $15 \sqrt{2}$
b $\sqrt{5}$
c $\quad 3 \sqrt{2}$
d $\sqrt{3}$
e $6 \sqrt{7}$
f $5 \sqrt{3}$

3 a -1
c $\quad 10 \sqrt{5}-7$
b $\quad 9-\sqrt{3}$
d $\quad 26-4 \sqrt{2}$
$4 \quad$ a $\quad \frac{\sqrt{5}}{5}$
b $\frac{\sqrt{11}}{11}$
c $\frac{2 \sqrt{7}}{7}$
d $\frac{\sqrt{2}}{2}$
e $\sqrt{2}$
f $\sqrt{5}$
g $\frac{\sqrt{3}}{3}$
h $\frac{1}{3}$

5 a $\frac{3+\sqrt{5}}{4}$
b $\frac{2(4-\sqrt{3})}{13}$
c $\quad \frac{6(5+\sqrt{2})}{23}$
$6 x-y$
$7 \quad \mathbf{a} \quad 3+2 \sqrt{2}$
b $\frac{\sqrt{x}+\sqrt{y}}{x-y}$

